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Abstract 

Digital libraries can be deployed at many points throughout the life cycles of scientific 

research projects from their inception through data collection, analysis, documentation, 

publication, curation, preservation, and stewardship. Requirements for digital libraries to 

manage research data vary along many dimensions, including life cycle, scale, research 

domain, and types and degrees of openness. This article addresses the role of digital 

libraries in knowledge infrastructures for science, presenting evidence from long-term 

studies of four research sites. Findings are based on interviews (n=208), ethnographic 

fieldwork, document analysis, and historical archival research about scientific data 

practices, conducted over the course of more than a decade. The Transformation of 

Knowledge, Culture, and Practice in Data-Driven Science: A Knowledge Infrastructures 

Perspective project is based on a 2x2 design, comparing two “big science” astronomy 

sites with two “little science” sites that span physical sciences, life sciences, and 

engineering, and on dimensions of project scale and temporal stage of life cycle. The two 

astronomy sites invested in digital libraries for data management as part of their initial 

research design, whereas the smaller sites made smaller investments at later stages. Role 

specialization varies along the same lines, with the larger projects investing in 

information professionals, and smaller teams carrying out their own activities internally. 

Sites making the largest investments in digital libraries appear to view their datasets as 

their primary scientific legacy, while other sites stake their legacy elsewhere. Those 

investing in digital libraries are more concerned with the release and reuse of data; types 

and degrees of openness vary accordingly. The need for expertise in digital libraries, data 

science, and data stewardship is apparent throughout all four sites. Examples are 

presented of the challenges in designing digital libraries and knowledge infrastructures to 

manage and steward research data.    

 

 

Introduction 

Knowledge infrastructures are most simply defined as “robust networks of people, 

artifacts, and institutions that generate, share, and maintain specific knowledge about the 

human and natural worlds” [43:17]. Infrastructures are not engineered or fully coherent 

processes. Rather, they are best understood as ecologies or complex adaptive systems. 

They consist of many parts that interact through social and technical processes, with 

varying degrees of success. Knowledge infrastructures include technology, intellectual 

activities, learning, collaboration, and distributed access to human expertise and to 

documented information [44]. Digital libraries, usually understood as information 

retrieval systems that support text, images, numeric data, and other formats [11], are an 

essential component of knowledge infrastructures. They may be deployed throughout the 

research life cycle, from capturing observations through cleaning, analysis, and 

interpretation of data, to management, curation, and stewardship of research products. 

We take a broad view of digital libraries, spanning the range from local systems for 

managing research data to large-scale data repositories, and applications from the initial 

stages of data collection through archiving and preservation. 
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As scientific technologies such as genomic sequencing, sensor networks, astronomy 

instruments, and laboratory tools collect data at significantly faster rates, the need for 

digital library services also grows. Adapting scientific methods to greater volumes of 

data, often with greater diversity, poses new challenges for science and for data 

management. Combining data from multiple sources for new interpretations requires yet 

new kinds of systems and services.  

 

Digital libraries tend not to be generic systems. Rather, they are most effective when 

designed for specific communities and types of content. To design digital libraries for the 

management of scientific data requires expertise in scientific theory, method, 

instrumentation, interpretation, and knowledge organization. Whether a single digital 

library can support the entire life cycle of a given project is an open question, given the 

range of expertise and types of data handling involved. Scientific expertise is complex 

and divided differently within each field and specialty. Each step in data handling 

requires knowledge of the steps that went before. Details about data provenance that are 

necessary for interpretation may go unrecorded, so that future researchers lack the 

information necessary for reusing those data [10]. Researchers who design and carry out 

data collection activities may become aware of very small differences in calibration, 

minute artifacts in a data stream, and other perturbations – but these potential sources of 

error may be imperceptible to researchers further away from the data source. Digital 

libraries to manage research data may require far more metadata, provenance 

information, and other documentation than is required for most other retrieval 

applications.  

 

Data management has become a much higher priority in the research process due to 

requirements of funding agencies and journals to release research data at the time of 

article publication. Significant challenges to implementing data management arise from 

the complexities of modern scientific collaboration: competing notions of what counts as 

data, disparate views of research and innovation, differing incentives for data sharing and 

release, debates around economics and intellectual property issues relating to knowledge 

products, and public policy. If the potential of data-intensive science is to be realized, 

then appropriate systems, services, tools, content, policies, practices, and human 

resources are required to discover and exploit research products. However, it is not yet 

clear what infrastructure should be built or how to build it. Digital libraries are a small 

but important part of the solution [12,13,16,44].  

 

Managing research data is difficult, and making research data useful to unknown others, 

for unanticipated purposes, is far harder. As researchers approach the data management 

limits of available tools and resources, they hit the scaling problem. Having more data 

requires not just larger or faster tools, but indeed different tools and different modes of 

inquiry. The scaling problem is playing out differently in each field, lab, project, and 

research site. Only by comparing multiple cases over long periods of time can the array 

of data management challenges and the roles of digital libraries be identified.  
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Data management and digital library requirements vary considerably by the scale of the 

scientific project. Data collected by large instruments at large facilities are characterized 

by international, collaborative efforts that produce vast amounts of data. These data often 

are big in volume and velocity, but may be homogeneous in form and structure. Data 

collected at distributed sites by small teams are typified by heterogeneous methods, 

diverse forms of data, and by local control and analysis. Price [98] and others categorized 

these distinctions as “big science” and “little science,” respectively. Data management 

concerns and practices appear to differ greatly along these and other dimensions 

[19,35,86]. “Big data” is equally difficult to define. From a management perspective, 

distinctions between volume, variety, and velocity are useful [78]. From a research 

perspective, “bigness” is relative to the available methods and tools for interpretation 

[90]. Degrees of homogeneity and heterogeneity may influence research data 

management more than size, per se [13]. 

 

Socio-technical research approaches can inform design, policy, and human resource 

requirements for infrastructure at all scales of science and scholarship. The 

Transformation of Knowledge, Culture, and Practice in Data-Driven Science: A 

Knowledge Infrastructures Perspective project (henceforth known as the Knowledge 

Infrastructures project) compares four large, distributed, multidisciplinary scientific 

endeavors: two of the research projects collected data from very large instruments at 

large facilities, classified as big science in our research design, and two projects collected 

data at distributed sites by small teams, classified as little science for the purposes of 

comparison. Two sites are in the early stages of their research life cycle, ramping up their 

research activities, while the other two are in later stages, ramping down their data 

collection and active research.  

 

This article presents an overview of the Knowledge Infrastructures project, a long-term 

exploration of processes related to data practices, one component of which is the use of 

digital libraries. In the next sections, we explain the research questions, outline the 

research methods, and discuss the data practices we observed at each site. More detailed 

analyses of the sites are provided in prior publications, which are referenced throughout 

this article. Initial comparisons of the four sites were presented in the conference paper 

on which this article is based1. Here we offer fuller analyses, conclusions, and directions 

for future research.  

 

Knowledge Infrastructures in Science 

Knowledge infrastructures for data-intensive science must do much more than 

disseminate resources – they must support data collection, analysis, use, and access to 

information. Knowledge infrastructures are expensive to construct and maintain. The 

value proposition and burden of costs are much debated [4,8,23,46,64,103].  

 

                                                 
1 Articles for this special issue were invited from the “best papers” nominations from DL2014, the IEEE/ACM Joint 

Conference on Digital Libraries, London.  
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The design of successful knowledge infrastructures for science depends on successful 

explication of the socio-technical structures embedded in research data practices, 

technical configurations, and policies. These interdependencies pose significant barriers 

to establishing and adopting of effective infrastructures. Among the digital library 

challenges in managing research data are granularity, provenance, structures, identity, 

identifiers, and functions of data [7,31,100].  

 

While countless policy reports call for building infrastructure and capacity for managing 

research data, only a handful of studies have addressed how understanding data practices 

might inform design and policy. Included in studies of knowledge infrastructures are 

research on work practices, collaborations, virtual organizations, computer supported 

collaborative work, project life cycles, and temporal factors 

[13,43,48,56,75,76,79,101,109,117].  

 

Data, Digital Libraries, and Stewardship 
Digital libraries originated with textual content and expanded quickly to include multi-

media resources and research data. Design requirements vary by content type, user 

community, and other factors. Digital libraries, whether for data or documents, are most 

often deployed at the end of the research process to provide access to publications and to 

data that are released for purposes of reuse, verification, or reproducibility. A broader 

conception of digital libraries that can support the entire information life cycle is not a 

new idea [14]. However, this more inclusive notion requires a different architecture than 

systems designed for publications or other documents. Rarely are data self-describing, 

nor do they stand alone as independent units. Data are best viewed in relationship to 

papers, protocols, analytical tools, instruments, software, workflows, and other 

components of research practice. Thus, expertise in organizing and retrieving complex 

research objects has become critical to the management of data [13,44,95,99].  

 

Digital libraries can support active use of data during the research process, products to be 

managed for later reuse or repurposing, and access to data and results. The activities and 

expertise will vary along this continuum. Data management is the general rubric of 

ensuring the integrity, access, and usability throughout the research process and beyond. 

Data curation is a form of digital curation, which “involves maintaining, preserving and 

adding value to digital research data throughout its lifecycle” [41]. Data preservation, in 

contrast, ensures long-term integrity but not necessarily availability for active scientific 

use. Dark archives provide preservation but not access. Stewardship addresses the need 

for long-term sustainability of data, including integrity and access. Some distinguish 

further between integrity, accessibility, and stewardship of research data [34]. Digital 

libraries can support any of these roles. The design challenges are to understand the data 

practices of the research community, to make policy decisions on how to sustain access, 

and to plan for curation. These decisions are inseparable from the workforce 

requirements for managing research data, including data scientists and data stewards.  
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Data in the Life Cycles of Science 
“Life cycle” is a term commonly used in archives, libraries, records management, and 

digital libraries to reflect changes in the form and character of objects over time, usually 

from their origin to their ultimate disposition, which may be preservation or destruction 

[14,25,62,65,66,67,117]. When used in the context of scholarly communication, life 

cycles may refer to stages of research projects, from origin of the ideas through to 

publication and dissemination. These life cycles intersect, in that different research 

products are created and used in each stage of research [97]. Despite the wide use of the 

term, “life cycle” remains problematic as it suggests that research proceeds stepwise with 

a beginning, middle, and end, rather than iterating through many steps [12,24].  

 

Scientific activities involve multiple, intersecting, and often disparate cycles. “Rhythms 

of collaboration” better captures the complexity of how data, practices, collaborations, 

and activities flow through any project [70,71]. Data collection may involve access to 

instruments, research sites, or people, and can be driven by sampling rates and other 

rhythms. Deadlines for grant proposals, conference papers, publishing venues, and 

personnel reviews often are in conflict. Data management may be central to planning 

long term projects – or may be an afterthought addressed as project funding ends or as 

deadlines for data release loom large. Large projects may consist of many smaller 

activities, each with its own life cycle of data practices. Conflicts over data practices 

often contribute to “science friction” [45].  

 

Big Science, Little Science, and Scale 
The terms “little science” and “big science” have been used since the 1950s to 

characterize and contrast styles of the organization of scientific work [98]. Both terms 

have been subject to a wide range of interpretations. The dichotomy of little and big 

science remains a highly influential paradigm within a wide range of academic 

disciplines that study scientific work, most notably Information Studies, Science and 

Technology Studies, History of Science, and Sociology [52,53]. However, these 

distinctions also are highly problematic, attempting to reduce the complexity of science 

to a simple dichotomy. In our research, we prefer to investigate how scale matters in data 

practices, rather than assume the distinction. 

 

In our current work, we are finding a complex array of scalar relationships between 

aspects of individual projects [16,17,37,39]. These lead us to pose new questions about 

these relationships: To what extent is big science an aggregation of little science 

contexts? When and how do little science contexts cohere into a single infrastructure or 

big science context? When and how do small team practices cohere into a larger, single 

infrastructure? How do the scale of instruments and infrastructures shape each other? 

How do data practices vary by these factors?  

 

Scientific research can be viewed in terms of several scale dimensions. Research 

conducted by small teams at distributed sites over the short term has been referred to 

variously as “small science” [35,92] and “long-tail science” [63,94]. Funding of such 
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projects is typically on the scale of tens or hundreds of thousands of U.S. dollars [63]. 

The structure and organization of short-term, distributed research projects conducted by 

small teams has important implications for their data management practices. Such data 

are generally small in volume, but may be heterogeneous in type and form [9,19,73,74].  

 

Little science projects, by definition, tend to be carried out by individuals or small teams 

of scientists working in either a single laboratory or at distributed sites. As a result, role 

specialization is minimal. Resulting scientific papers are usually single-authored, or 

involve at most a handful of co-authors [76]. Standardization of methods across the 

scientific domain is minimal, to the extent that each scientist may use different tools and 

techniques to generate datasets similar in form and intent [38]. Responsibility for data 

management falls to the scientists who produced the data. As a result, data tend to be 

managed by localized, ad hoc practices for the immediate purposes of the scientists 

[20,116]. Consequently, data often are neglected after their immediate usefulness and 

may be lost [9].  

 

At the other extreme of scale is scientific research conducted with large instruments, 

often at large facilities [30,55]. Big science projects of these types require massive 

funding, often on the scale of tens, millions, or even billions of U.S. dollars from multiple 

government agencies, private benefactors, or foundations [77]. This level of funding is 

necessary to construct and operate large facilities, whether telescopes, linear colliders, or 

data repositories. Such projects are found in a range of disciplines in the physical 

sciences, including physics, astronomy, physical oceanography, fusion physics, and space 

sciences [89,105,109]. Although human genome research can be conducted at smaller 

facilities with less expensive instruments, widely distributed research requires large 

budgets [80,114]. The greater the funding, the greater the oversight from the agencies 

providing those funds [30,55]. 

  

Collaborations using large instruments at large facilities may have hundreds or thousands 

of members and often are international undertakings, although the team members usually 

are distributed worldwide [76].  Documents governing the work and organization include 

formalized agreements between partner institutions, extensive reporting to funding 

bodies, detailed work plans, and policies [32,61]. Another consequence of size is greater 

division of labor. The larger the project, the more specialized and routinized that 

individual work tasks may become [26,32]. The scale of large collaborations and the 

nature of the work involved have given rise to publications with many tens, hundreds, or 

even thousands of co-authors [54,76,120]. In those subfields the reputations of individual 

researchers depends less on authorship metrics than on other roles in the community 

[109,110,111,112]. 

 

We are investigating how data and data practices differ across the scale of research, 

whether measured in terms of facilities, size of teams, size of data, funding, or other 

factors. Large projects tend to be more routinized and to produce large volumes of 

homogenous data. As projects increase in scale, the conditions under which data are 
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collected, stored, managed, curated, and made accessible tend to become more 

standardized and routinized. Smaller projects often are more adaptable to local 

conditions. Technology requirements for data production also appear to vary by size of 

project, diversity of data, distribution of the workforce, and other factors [9,13,22,61].  

 

Data: Open and Closed 
Digital libraries may support internal research use, particularly at earlier stages of the 

research process, with or without the intention to make data externally available later. 

Digital libraries also may support open access to data, especially at the points in a 

research project where datasets are released to repositories. Open access to data is not 

necessarily equivalent to open data or to open science. These concepts are either hotly 

debated or taken as givens in the practice of research. Scholars care deeply about the 

long-term availability of their publications; few are willing to make comparable 

investments in the longevity of their data.  

 

Open access to publications is predicated upon two conditions that do not transfer well to 

data: authors are copyright holders of their published work, until and unless they choose 

to transfer control; and scholars write articles to influence their audience, rather than for 

payment [13,106]. In contrast, the ownership and control of data remains among the 

intractable problems of eResearch [40], and the incentives and available resources to 

disseminate data are minimal.  

 

Many stakeholders make decisions about openness in any given research project. 

Decisions include dissemination strategies of scientists, governance models of 

universities and research centers, and the policies of funding agencies and journals. 

Openness is further complicated by the aggregate nature of research objects [6,97]. 

Datasets have little scientific value if documentation is inadequate or if the associated 

hardware, software, protocols, and other technologies are proprietary, unavailable, or 

obsolete.  

 

Despite the pressures from funding agencies and other stakeholders to release data, “open 

data” is far from the norm, whether due to technical, infrastructural, cultural, or social 

factors. Thus the questions become what “open” means to scientists, the conditions under 

which they make their data open, what they expect to gain or lose by openness, and what 

roles other stakeholders play in how openness is negotiated. As our research reveals, 

openness is not a specific set of practices but a process that occurs throughout the 

research life cycle. 

 

Research Methods 

The Knowledge Infrastructures project addresses four questions across four sites:  

1. What new infrastructures, divisions of labor, knowledge, and expertise are 

required for data-intensive science?  
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2. How are the infrastructures of multi-disciplinary, data-intensive scientific 

endeavors established and how are they dismantled?  

3. How do data management, curation, sharing, and reuse practices vary among 

research areas?  

4. What data are most important to curate, from whose perspective, and who 

decides?  

 

The four research sites vary by scale of the data-intensive research and by stage of the 

project life cycle, as presented in Figure 1. The two smaller scale sites, each of which 

produces small amounts of heterogeneous data, are the Center for Embedded Networked 

Sensing (CENS) and the Center for Dark Energy Biosphere Investigations (C-DEBI). 

The two larger scale sites, with large instruments and facilities that produce great 

volumes of relatively homogeneous data, are the Sloan Digital Sky Survey (SDSS) and 

the Large Synoptic Survey Telescope (LSST). The life cycle comparison is between sites 

in earlier stages (C-DEBI and LSST) that are ramping up infrastructure development and 

data production, and sites at later stages (CENS and SDSS) that have established their 

infrastructures and completed data collection.  

 

Figure 1: Sites by scope of research projects and stage of life cycle  

 Larger Science Smaller Science 

Ramping up data collection LSST C-DEBI 

Ramping down data collection SDSS CENS 

 

These projects vary by collaboration size, duration, cost, research technologies, and 

organizational complexity. They are conducted in spaces that range from one locality to 

globally distributed sites. We are studying how the work is divided among teams large 

and small, how local and global are the practices and priorities, and how smaller units 

aggregate into large collaborations. We also explore how these combinations of 

arrangements influence data practices at each stage of project life cycle. 

 

Research questions about the types and degrees of openness of these projects cut across 

the scale and life cycle dimensions. On the one hand, larger science contexts might lend 

themselves to greater openness as they often are characterized by more homogeneous 

data and more standardized data practices (contributing to interoperability and sharing), 

role specialization (people tasked with data management and curation), bureaucracy 

(mandates to manage, curate, and share data), and more funding for infrastructures. On 

the other hand, research at smaller sites may be more open as these types of projects are 

characterized by greater flexibility in methods, tools, and infrastructure. Researchers may 

adapt their practices more quickly to new audiences and publishing venues, and can 

adjust their data life cycles accordingly. Our research questions concern the degree to 

which variations in openness, data life cycles, data management, and homogeneity of 

data are associated with scale or with a big science / little science dichotomy. 
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We have studied these four research sites for different periods of time. Each site is 

distributed across multiple institutions, some internationally. Our research on CENS 

began prior to its inception in 2002, followed through its ten years as a National Science 

Foundation Science and Technology Center (NSF STC), and continues, now considering 

its legacy [15,18,19,20,118,119]. Research questions about SDSS have evolved through 

several grant projects since 2009, covering data practices, knowledge transfer, and 

workforce development [49,102,121,122]. Background research on LSST began in 2009 

and fieldwork in 2014. Research on C-DEBI began in 2012, and we plan to continue to 

study this site through its next stages of development [37]. 

 

Research on each site involves a mix of methods, including semi-structured and 

unstructured interviews, ethnographic fieldwork, document analysis, and historical 

archival research to explore data practices from multiple perspectives. Our methods 

enable us to investigate individual, collaborative, and community-wide data practices 

over a long time frame. Locating the intersecting patterns and anomalies in the records 

gathered by each method strengthens our analyses.  

 

Interviews with individuals capture their point of view about their experience with data 

practices throughout their career trajectories, working on multiple projects, including 

their present activities. The locations and times for the interviews are established by 

mutual agreement between the interviewees and interviewers; most are conducted at the 

interviewee’s worksite. These interviews usually last between 45 and 120 minutes. They 

are recorded, transcribed, and coded. For each interviewee quoted in this paper, we assign 

an identifier comprising the acronym for the project with which the interviewee is 

affiliated and a unique number for the individual (for instance, CENS-1, LSST-2, etc.). 

 

Ethnographic fieldwork is focused on collaborations, communities, and working 

relationships. Our fieldwork is conducted at each site in situations and events structured 

by the people under study to investigate discussions and practices among participants 

working together, engaging in the same project, or participating in the same event. We 

focus on how participants work together to define, modify, and transmit their knowledge, 

and how they modify the intellectual and infrastructural ecologies in which they are 

working. More specifically, we observe their divisions of labor, allocations of scarce 

resources, and their processes for dispute negotiation, maintenance, and resolution. We 

take extensive field notes based upon our field observations. Our notes are organized by 

four frames: ecology (funding, built environment, tools, skills), social organization 

(divisions of labor, allocation of scare resources, decision and disputing processes), 

stages of a career/project/knowledge development, and knowledge making (styles of 

inquiry, practices, conceptual strategies). 

 

Document analysis includes collecting public records about the individuals and projects, 

including publications, websites, presentations, and ephemera. We also collect materials 

that are made available by our research participants. These provide background 

information, evidence of activities, and corroborating resources on various aspects of the 

study. 
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Historical archival research methods require the examination of documents, formal and 

informal, in all media that have been generated by and about the group under study 

throughout its existence. Those documents might be archived at multiple locations: 

research and work sites, funding agencies, publication venues, data repositories, and even 

residences. The documents are in multiple formats, shaped by the needs of the people and 

organizations that generated and required them for different occasions, such as seminars, 

workshops, conferences, collaboration meetings, and conducting experiments. Each set of 

documents is analyzed to identify the shared assumptions and disputes that locate the 

exchange at any specific time and place. Sets of documents are juxtaposed to examine the 

distribution and sequence of the frames of reference embedded in them. The documents’ 

organizational context, authors, readers, distribution, and access also are studied. These 

discursive practices are examined for instances of contestation, adjudication, and 

consensus building. 

 

The CENS comparisons presented here are drawn from a round of 77 semi-structured 

interviews collected in 2006-2013, participant-observation in a variety of capacities 

throughout the lifetime of the Center, and analysis of documents such as publications and 

annual reports. For SDSS, we draw on 60 interviews conducted with 54 participants, five 

weeks of ethnographic participant-observation, and analysis of webpages and other 

documents. For C-DEBI, we draw from a round of 49 interviews, participant-observation 

that included being embedded in a laboratory for eight months and short-term observation 

in two other laboratories, and involvement in the development of data management 

infrastructure. For LSST, we draw on background research, 22 interviews, and 7 weeks 

of ethnographic participant-observation (Figure 2). Analytical coding of interview 

transcripts, fieldnotes, and documents were done in NVivo 9, a qualitative analysis 

software package, and analyzed for emergent themes using grounded theory [57]. 

 

Figure 2: Interviews used for findings in this article. Cell column totals reflect 

overlapping participation in institutions and projects 

Sites  Interviews People Institutions Period 

CENS 77 72 4 2006 - 2013 

SDSS 60 54 14    2012 - 2013  

C-DEBI 49 49 16      2012 - 2014  

LSST 22 21 4      2014 

Total 208 193 33  

 

In this article, we compare our data practice findings from the four sites to address 

implications for the design of digital libraries. Specific questions include what factors of 

data management practices are amenable to digital library solutions and which are larger 

knowledge infrastructure concerns. Of particular interest is the ability to identify data 

management issues that vary by domain and those that are common across domains. 

Questions about knowledge infrastructures and openness cut across all of these 

dimensions. 
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Findings 

Findings are presented in two parts. First, each of the four sites is analyzed with respect 

to data management concerns that may or may not be amenable to digital library 

solutions. Second are pairwise comparisons by the two dimensions of our inquiry: scale 

of scientific practice and life cycle stage of project. We distinguish between data 

management issues that are specific to individual domains and those that are common 

across domains. Discussion of the findings follows, addressing the implications for 

knowledge infrastructures and for the design of digital libraries. 

 

Research Sites: Digital Libraries and Degrees of Openness 
In this section, each of the four research sites is described with respect to their use of 

digital libraries and their types and degrees of openness. These analyses provide the basis 

for later comparisons on the dimensions of scale and life cycle. 

 

Center for Embedded Networked Sensing (CENS) 
CENS (2002-2012) was a U. S. National Science Foundation Science and Technology 

Center devoted to developing embedded networked sensing systems for scientific and 

social applications through collaborations between engineers, computer scientists, and 

domain researchers. By partnering across disciplinary boundaries, participants had to 

articulate their research practices, methods, and expectations explicitly. Membership 

varied from year to year as projects began and ended, and as the rosters of students, 

faculty, post-doctoral fellows, and staff evolved. At its peak, the Center had about 300 

participants from the five partner universities in California and collaborators from other 

institutions. On average over the life of the Center, about 75 to 80% of CENS participants 

were concerned with the development and deployment of sensing technologies; the rest 

were in science, medical, or social application domains. Technology research addressed 

the development and testing of embedded networked sensing systems. Research in the 

application domains addressed the new methods and findings made possible by these 

technologies.  

 

Most CENS research was little science in character, conducted in field deployments that 

produced heterogeneous types of data. Sensor networks produced far more data than did 

the hand-sampling methods that dominated CENS research in ecology, environmental 

sciences, biology, and ocean science. As the volume and velocity of data increased, 

science teams encountered scaling problems that their existing methods could not 

accommodate. In the marine biology studies, for example, science teams usually captured 

water samples three to four times in each 24-hour period. Those observations were 

correlated as time series. Sensor networks, however, sampled the water at five-minute 

intervals. Simple correlations and time series analyses did not suffice for these data rates, 

which led to the adoption of complex modeling techniques [20,21,118]. Seismology was 

the CENS research area that exhibited the most big science characteristics, such as 

established data standards, community repositories, large-scale equipment, and large 
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volumes of homogeneous data. CENS teams laid seismic monitoring equipment along 

transects across entire countries, including Mexico and Peru [87]. 

 

CENS data management problems, particularly in the domains with little science 

characteristics, were less amenable to digital library solutions than expected. Interest in a 

common data repository was minimal, for a variety of reasons that are explored here. 

While CENS was publicly committed to sharing data, the Center was established prior to 

NSF requirements for data management plans and they were not under pressure to 

develop data curation mechanisms. The “small science” approaches of CENS research 

resulted in heterogeneous data that were difficult to aggregate for comparison or reuse. A 

simple digital library, dubbed “The CENS Deployment Center” was developed and 

populated with descriptions of sets of equipment and personnel from past deployments. 

These functions were intended to make deployments more efficient and productive and to 

provide context about past deployments. The system was moderately successful in 

serving these functions [21,87,115,117]. Seismology was the exception, as noted above. 

They had a domain-specific repository to which they were required to contribute their 

data, and had little need for local solutions [45,119].   

 

In CENS, data were a means to an end, which was to answer science domain questions or 

to build better technologies to ask those questions. The data from field deployments were 

dispersed to individual science and technology teams, with little concern for the ability to 

recombine them later. With the exception of seismology, data rarely were kept for reuse 

beyond the teams that collected them. The majority of CENS participants were 

technology researchers whose scholarly products were papers, software, and instruments. 

Software code was often treated as data, and might be contributed to code-sharing sites. 

Most researchers maintained their data locally. Different data policies led to different 

degrees of openness of data. CENS researchers were in principle open to sharing their 

data, but most data exchanges were between individuals. Few CENS data were released 

publicly or contributed to archives. We also found considerable confusion and 

disagreement about who was responsible for different types of data, and that 

responsibility might vary over stages of the project. Lacking agreement on responsibility, 

data frequently were neglected [20,21,115,119].  

 

Sloan Digital Sky Survey (SDSS) 
Astronomy sky surveys are research projects to capture uniform data about a region of 

the sky. The Sloan Digital Sky Survey, named after its largest funder, the Alfred P. Sloan 

Foundation, is notable for its commitment to timely data releases. The SDSS data are 

available through a sophisticated and large-scale digital library infrastructure. Judging by 

the number of papers mentioning SDSS, the data continue to be heavily used. For 

example, a May 2015 search of the SAO/NASA Astrophysics Data System (ADS) yields 

more than 9,000 papers mentioning “SDSS” in the title or abstract [2]. The actual number 

of papers using SDSS data is probably much higher, given the common practice of 

reusing data without citing them in publications [58,96,122].  
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SDSS planning began in the 1990s; the design of digital library infrastructure was 

integral to the project. Survey data collection began in 2000, mapping about one-quarter 

of the night sky with a focus on galaxies, quasars, and stars. A 2.5-meter optical telescope 

at Apache Point Observatory in New Mexico was designed, built, and deployed for the 

collection of the SDSS survey data. Multiple instruments on the telescope collected 

optical and spectroscopic data. The first phase of the SDSS project (SDSS-I) ran from 

2000 to 2005; SDSS-II covered 2005 to 2008. Each was funded as an independent 

project. SDSS-II expanded the scientific goals and broadened participation. Over the 

series of eight data releases from 2002 to 2009, SDSS captured data at higher rates and 

better resolution due to new instruments added to the telescope, advances in charge-

coupled devices (CCDs) for the cameras, spectroscopy, and improvements in computer 

speed and capacity. SDSS-III continued with largely new leadership, collaborating 

institutions, and scientific goals. SDSS-III collected data through summer 2014, when 

SDSS-IV began [3,50,59,104].  

 

Our research focuses on SDSS-I and II and the disposition of the associated datasets. We 

began to study these SDSS projects in 2009 as they began their archival phase. In 2008, 

four Memoranda of Understanding (MOU) established how the datasets would be 

managed for the subsequent five years, until early 2014. The SDSS investigators chose to 

migrate the dataset, which is between 100 and 200 terabytes in size (depending upon 

what files are included), from the national laboratory previously hosting the dataset to 

two university research libraries. The libraries collaborated with SDSS astronomers to 

ensure proper management of the data during the MOU period [102].  

 

As SDSS phases I and II have completed data collection, it is now apparent how 

extensively these data continue to be used by individuals and small teams of scientists 

[102]. Collaborators with roles in the design of the project benefited from early access to, 

and knowledge of, the data, as one of the SDSS collaborators explained: 

 

“By being a member, those institutions not only get to see the data immediately... 

If they're working hands-on with the reduction of the data, they also have a head 

start in knowing what's in there even before it's released to the universities. There 

might be somebody who's helping reduce the data, and they can say, ‘Oh, well, 

that's interesting,’ and they can follow it up with the [telescope] if they want to 

during that proprietary period” (SDSS-3). 

 

SDSS data are open to the world after the proprietary period, in the sense of being 

available without fee or extensive license restrictions. Investigators take data from the 

SDSS archives and derive new data, alone or in combination with data from other 

sources, and are not obligated to release their resulting datasets. Small projects and sole 

investigators thus have access to high quality data, and may not require much time or 

external funding to conduct research with these data. Small projects exhibit minimal 

division of labor, with individual scientists often conducting all stages of the project in 

their laboratories or offices. Tools and practices may be localized, although the use of 
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open sources based on standard formats may promote the use of common tools. SDSS 

data flow from the digital library to individual researchers and teams. These teams, in 

turn, may derive new data products from SDSS and other sources, often in combination. 

Some of these derived datasets can be submitted back to SDSS, such as well-curated star 

catalogs. However, such derived data remain the responsibility of the teams that created 

them. Curation is typically localized and ad hoc, with significant loss of these datasets 

over time. 

 

The SDSS dataset and its copies reflect an expansion of users and reuses beyond those 

expected by the data creators. SDSS data have been reused in multiple scientific 

communities and have become the basis for citizen science projects such as Galaxy Zoo, 

which led to the Zooniverse [36,124]. As an astronomy professor explains, “I'm not sure 

this was widely appreciated, but the SkyServer started as… some sort of interface that 

will allow high school kids to do interesting things with a big scientific database… But it 

then evolved into this thing, which is crucially important for professional astronomers” 

(SDSS-1).  

 

The SDSS-I and II datasets remain available at the original national laboratory site. 

Copies of these datasets, in whole or in part, are also hosted by several other universities 

around the world, either as backup or for local research access. An SDSS researcher 

commented:  

 

“There are some other unofficial mirrors around the world. … There's still one in 

[names several locations]; I don't know. But these are kind of unofficial mirror 

sites. We do send data to them, they download our data, but we don't kind of hold 

their hand while they're bringing up the mirror site or anything. They just do that 

on their own. If they need anything from us, they just ask us” (SDSS-2). 

 

The proliferation of SDSS dataset copies suggests yet another kind of openness, plus the 

fact that no master list of all copies appears to exist. SDSS has allowed users to take the 

data, process them in a variety of ways, and thus create additional value. SDSS 

investigators who led the initial data management design have received new funding to 

re-engineer the system, combining datasets from all the SDSS phases, and building a 

common platform to support data from multiple scientific disciplines 

[60,72,107,108,123]. 

 

Center for Dark Energy Biosphere Investigations (C-DEBI) 
 

The Center for Dark Energy Biosphere Investigations is a ten-year Science and 

Technology Center that launched in October 2010 with five years of funding and the 

possibility of renewal for an additional five years [29]. The Center receives funding from 

the National Science Foundation, much of which is redistributed to participating 

scientists. These are short-term grants (typically one to three years in length), given to 
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individuals and small teams. On a six-month cycle, C-DEBI awards small grants to 

cohorts of doctoral students, post-doctoral researchers, and senior scientists. The project’s 

policy is to fund new participants in each cycle. As a result, a steady stream of new 

members joins the C-DEBI community, bringing a variety of multidisciplinary 

approaches and methods to bear on research questions. These participants, more than 90 

to date, are distributed across more than 30 institutions in the USA, Europe, and East 

Asia, and across multiple physical and life science disciplines.  

 

C-DEBI scientists collect and analyze physical samples (known as “cores”) from the 

ocean floor, such as sediments and portions of the basaltic crust, to describe their 

microbial communities and physical properties. The data life cycle often begins with 

ocean drilling cruises to collect cores. The most significant cruises are those conducted 

under the auspices of the Integrated Ocean Drilling Program (IODP), an international 

organization established to study the seafloor, later known as the International Ocean 

Discovery Program [68]. Some core samples are processed on board these cruises to 

generate data about the physical characteristics of the seafloor. Other samples are 

distributed widely across the investigators, projects, and sites. These are used to generate 

both physical and biological data that can then be correlated to understand interactions 

between microbial communities and their environment. Physical samples may be stored 

in repositories for the long term. IODP makes extensive use of digital libraries for the 

curation and access of data generated on board their cruises, and for cataloging physical 

samples stored in repositories. 

 

The launch of C-DEBI afforded opportunities to observe how the work of negotiating, 

building, and maintaining data management infrastructure unfolds in a new collaborative 

setting. C-DEBI is in the process of implementing digital library approaches to improve 

the management of data and to make data more accessible to the community. Making 

data more open was stated as an aspiration in the project’s five-year Strategic 

Implementation Plan 2010-2015, although “technical difficulty” was also mentioned as a 

barrier to establishing the infrastructure [27:11]. Only in 2012 did building the data 

management infrastructure become part of C-DEBI’s active work in response to new 

NSF requirements that all  STCs must implement data management plans. 

 

Their infrastructure includes an online data registry and repository, plus a policy 

document, C-DEBI Data Management and Philosophy [28]. Their data management plan 

stresses that the “C-DEBI STC is committed to open access for all information and data 

gathered during scientific research that is conducted as part of C-DEBI” [28:1]. C-DEBI 

scientists are mandated to make data available after a moratorium (typically two years), 

either in a public repository external to C-DEBI (if an appropriate repository exists) or in 

the C-DEBI repository, once established. Scientists will be required to create an entry in 

the C-DEBI registry for data that are deposited in an external repository. The task of 

building this infrastructure is complicated by the heterogeneity of methods, array of 

domain expertise, domain-specific curation needs, and disparate relationships between 

physical samples and digital data in the C-DEBI community [37].  
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Complex relationships between the domain of study and the IODP have shaped how C-

DEBI is developing its infrastructure. The IODP is the latest iteration in a series of 

scientific ocean drilling cruise programs operating since the late 1960s. Research space – 

for people, equipment, and data collection time – is scarce on scientific ocean drilling 

cruises. Initially, the cruises were intended only for researchers from physical science 

disciplines. The first cruise dedicated to microbiology took place in 2002. C-DEBI 

scientists, many of whom are microbiologists, must negotiate with scientists from other 

projects and research domains. We are finding that the C-DEBI infrastructure for data 

management is being designed for parallel purposes, both local needs and access to IODP 

resources. These social considerations motivate the construction of this infrastructure and 

the choice of features [37]. In particular, C-DEBI aspires that its digital library eventually 

becomes interoperable with the IODP database, thus becoming part of the larger 

knowledge infrastructure of their science.  

 

Large Synoptic Survey Telescope (LSST) 
The Large Synoptic Survey Telescope is a massive astronomy collaboration that is 

building a ground-based optical telescope in Chile [82]. Planned as the next major sky 

survey, LSST is due to launch a decade-long phase of data collection in 2022, generating 

up to 20 terabytes of data nightly. It will collect time-resolved optical image data 

[5,69,84]. LSST is intended to support scientific advancements in four science themes: 

“probing dark energy and dark matter, taking an inventory of the solar system, exploring 

the transient optical sky, and mapping the Milky Way” [69], enabling individual and 

small teams of scientists accessing and using the data to work on their own research 

questions within these themes. 

 

Initial discussions about LSST began in the early 1990s, and by 2001 LSST was one of 

seven Prioritized Major Initiatives in National Research Council’s Decadal Survey of 

astronomy, ranked as the most important ground-based facility [33]. The LSST 

Corporation was formed in 2003 as a non-profit organization. In 2012, the National 

Science Board approved funding for the final design stage, and in summer 2014, NSF 

approved funding for LSST to transition from its research and development phase to its 

construction phase. Although planning for digital library approaches to data curation and 

access have been embedded in the collaboration since LSST’s initial conception, this 

transition is accompanied by the ramping up of the implementation of infrastructure for 

data collection, management, and accessibility, and by policy decisions about who can 

access the data and on what terms.  

 

LSST is headquartered at a Center in Tucson, Arizona, under the auspices of the 

Associations of Universities for Research in Astronomy, with significant aspects of the 

data management work based at other sites, including the SLAC National Accelerator 

Laboratory, the University of Washington, the Infrared Processing and Analysis Center, 

the National Center for Supercomputing Applications, and Princeton University. 

Scientists at nineteen national laboratories and universities are involved in building the 

LSST telescope. Eleven Science Collaborations have been convened to plan for the 

multiple scientific domains of LSST data that address research questions in astronomy. 
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A significant amount of data-intensive work already has been accomplished on LSST, 

including simulations to test the emerging infrastructure. Studying these processes 

enables the Knowledge Infrastructures team to learn how data management practices are 

being negotiated, resolved, and incorporated as LSST moves towards its data collection 

phase. Although LSST appears to exemplify big science, given how much of their 

scientific work is based in large-scale facilities, we are finding that individuals and small 

teams are carrying out many elements of LSST development work. One example is that 

some components of the camera are being tested in short-term projects. Such projects are 

typically funded separately from the main LSST infrastructure development, with small 

budgets, employing localized data management and record-keeping practices. Findings 

from these projects are eventually folded into the development of the larger infrastructure. 

 

The ethos of openness is fundamental to LSST data management principles [16], 

although subject to negotiation and restrictions. LSST policy requires that the code used 

to build the LSST data management infrastructure is open source. Potential end-users of 

LSST data and software are invited to use and adapt LSST source code, which later may 

become part of the official LSST code. Whereas LSST source code will be available 

globally, LSST datasets will be openly accessible within the United States but available 

outside the U.S. only through agreements negotiated with individual countries. Within 

partner countries, access may or may not be limited to LSST investigators.  

  

Comparing Sites: Dimensions of Diversity 
This section provides pairwise comparisons of the four sites by two dimensions: scale 

and stage of life cycle. The two-by-two research design of the Knowledge Infrastructures 

project hypothesizes that data management practices will vary along these dimensions. In 

some cases, distinctions are sharp and in others they vary along a continuum. With a view 

to informing future decision-making about the support of data management practices in 

scientific collaboration, we consider which practices are amenable to digital library 

solutions and which are larger knowledge infrastructure concerns. We also identify data 

management issues that are specific to individual domains and those that are common 

across domains.  Comparisons between sites are summarized in Figure 3. 
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Figure 3: Pairwise comparisons between sites 

 Similarities Differences 

CENS and 

C-DEBI 

Smaller 

scale 

science 

 No clear chain of responsibility 

for data; 

 Different groups responsible for 

different types of data; 

 Interpersonal data sharing, with 

conditions attached. 

 CENS was all smaller-scale 

science, whereas C-DEBI involves 

science at diverse scales; 

 C-DEBI is subject to NSF Data 

Management Plan requirements, 

whereas CENS was not. 

 

SDSS and 

LSST 

Larger 

scale 

science 

 Primary legacies are large-scale 

astronomy datasets; 

 Other legacies include 

instrumentation and expertise; 

 Many overlaps in personnel, 

resulting in transfer of expertise 

from SDSS to LSST. 

 LSST will collect larger volumes 

of data, at much greater velocity 

than did SDSS; 

 LSST data will be made available 

almost immediately, whereas 

SDSS data were released annually 

following a proprietary period. 

C-DEBI 

and LSST 

Earlier 

stages of 

the life 

cycle 

 LSST and C-DEBI both involve 

datasets collected within the 

context of a large-scale 

enterprise, but which also are 

used in the context of smaller 

projects. 

 LSST ramping-up is taking about 

two decades, whereas C-DEBI 

ramped-up in a period of months;  

 In C-DEBI, data producers and 

users are often the same people; in 

LSST these are different groups, 

with some overlap; 

 LSST involves a narrower range 

of disciplines than C-DEBI; 

 C-DEBI has greater data diversity 

and heterogeneity than LSST; 

 LSST builds on the extensive 

infrastructure of astronomy, 

whereas a goal of C-DEBI is to fill 

major infrastructural gaps; 

 LSST has dedicated data 

management staff, whereas C-

DEBI is retraining domain staff.  

CENS and 

SDSS 

Later 

stages of 

the life 

cycle 

 CENS and SDSS each have had 

lasting impacts on their 

respective domains through 

their publications; 

 Both developed new 

technologies; 

 Both extended the application of 

existing technologies to address 

new scientific questions. 

 SDSS produced a comprehensive 

dataset that remains scientifically 

valuable; 

 CENS produced technologies and 

software; 

 CENS left data curation to 

individual projects; no common 

dataset was created. 
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Smaller-Scale Science: CENS and C-DEBI  
CENS and C-DEBI have many similarities. Both projects are interdisciplinary federations 

of small teams of technologists and scientists working on projects funded by a mixture of 

internal and external grants. Both projects involve the generation of a wide range of 

small-scale, heterogeneous datasets that cover many scientific disciplines.  

 

However, multiple factors within each project have implications for data production and 

management practices. One difference is that CENS focused on developing technologies 

to facilitate new forms of scientific work. Their technology research teams worked in 

concert with teams of domain scientists. C-DEBI, in comparison, does not have separate 

technology and engineering teams. In both CENS and C-DEBI, technologies, methods, 

and scientific problems evolve together. Technologies and practices are co-emergent in 

the sense that novel or adapted technologies and methods afford the pursuit of novel 

scientific problems and, conversely, novel scientific problems drive the development of 

technologies and methods to address these problems. The CENS leadership team referred 

to this relationship as “co-innovation,” asking, for example, “ ‘Why does it need a sensor 

to make it happen?’– it was always that combination of scope and time scale of funding 

in order to be able to do that iterative co-innovation between application and technology” 

(CENS-1). 

 

Despite their close collaboration and interdependent research interests, the data practices 

of technology and science researchers in CENS were largely independent. The sensor 

data were of mutual interest, but for different purposes. The science researchers focused 

on the science variables, whereas the technology researchers tended to focus on the 

accuracy and integrity of their systems, abstracting away the science content in the 

process [20,118].  

 

In C-DEBI, scientists record their technologies or methods alongside the resulting data, 

for instance in their laboratory notebooks. Details are published in their journal articles. 

A disparate array of people may assume responsibility or ownership of interdependent 

datasets. A fundamental feature of C-DEBI is the collection and production of biological 

data about microbes and physical data about the environment that these microbes inhabit. 

These data are often correlated to track the impact of the microbes on their environment 

and vice versa. However, while many journals in which they publish require that 

biological datasets supporting the findings of journal articles be deposited or otherwise 

made available, no such mandate exists for physical data, as explained by one of our 

interviewees: 

 

“Nowadays they won't publish your work if it has molecular data and it's not in 

the database somewhere. The other data is just in a table... There are now 

databases where you could, I guess, submit this type of data like the geological 

data. But I haven't started doing that yet” (C-DEBI-2). 

 

Differential requirements lead to differences in the extent to which biological and 

physical data and associated publications are released. Bioscience journals generally 

require that associated data be available in biodatabases or repositories, whereas physical 
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science journals rarely have such data deposit requirements. Conversely, physical science 

journals will publish articles for which preprints have been circulated in arXiv or similar 

open access repositories, whereas bioscience journals are less willing to publish articles 

for which preprints have been posted. The order of authors and the significance of the 

ordering also vary greatly within and between fields of the biosciences and physical 

sciences.  

 

Another important difference in data practices between CENS and C-DEBI is that while 

the entirety of data life cycles in CENS generally unfolded within a single, small team, a 

significant portion of the C-DEBI data life cycles may also occur in the context of very 

large-scale infrastructure, namely the Integrated Ocean Drilling Program. IODP 

expeditions were conducted on one of two ocean-drilling cruise ships, both hundreds of 

meters in length and expensive to build and operate. For example, one of these ships, the 

Chikyu, cost approximately 600 million U.S. dollars to build in 2001-2002 [81]. MOUs 

were signed between the countries involved to govern the terms of each nation’s role, 

including financial contributions and the number of berths to be allocated on each 

expedition. Other aspects of the IODP’s operation were governed by documents such as a 

cruise’s Sampling Plan. The conduct of work on each expedition involved a high degree 

of role specialization. IODP curators oversaw core processing and data production, as a 

curator explained to us: 

 

“I'm responsible for the core material that we receive from the time that it's 

handed to us from the rig floor… I'm responsible for coordinating any sampling 

that is done for research on the core material… I enter all of the information into 

the database... I'm responsible for overseeing that whole process [of core analysis] 

and making sure that one particular instrument isn’t holding up the process... I'm 

just always kind of monitoring that everyone is properly handling the core 

material” (IODP-1). 

 

Data and other knowledge product management practices in IODP cruises were subjected 

to a wide range of analyses that were consistent across all IODP expeditions, and 

conducted according to standardized procedures. As one of our interviewees explained: 

“It took them decades to come up with the system... standard protocols, standard 

procedures, standard storage” (C-DEBI-3). This division of labor enabled high-

throughput processing of cores and data collection; as explained by the above IODP 

curator, “it's a much more concentrated environment so we're able to produce a 

tremendous amount of work… a lot gets done in an expedition for a 60-day period” 

(IODP-1). Resultant data, accompanied by rich metadata, have been stored in the publicly 

accessible IODP database, which is still in operation.  

 

The data life cycle in our C-DEBI case study unfolds across several scales of practice, 

and these different scales are involved in complex relationships that shape and constrain 

each other. One example relates to ongoing efforts to standardize procedures for 

biological analysis of cores. Currently, scientists apply a variety of methods, even for 

basic analyses. This heterogeneity means that biological analyses are not conducted as 

part of the standard package of analyses on board IODP cruises. As a result, 
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microbiologists must spend a great deal of time in their onshore laboratories after a cruise 

conducting these basic analyses, thus reducing the amount of time and money available 

for more advanced analyses: 

 

“The difference between what we can use that money for, and say, what a 

sedimentologist can use that money for, is grossly different. Because a 

sedimentologist, the geochemist, the petrologist, the paleo-mag guys, all of them 

pretty much have all the data. And so, they're looking at the $15,000 as seed 

money to maybe do some analysis that they maybe pay for a grad student, maybe 

pay for a technician, maybe pay for somebody's time, to analyze it, to maybe take 

it another direction, but then work up that data and submit it for your grant. For 

the biologist, we have $15,000 to now process all of our samples, do all the 

sequence analysis, do the bulk labor of all of our work on the equipment that we 

already have to have in our lab versus what everybody else is using on the ship” 

(C-DEBI-4). 

 

A second result is that microbiologists are often unwilling to travel on the time-

consuming IODP cruises as little microbiological work is carried out, meaning many 

cruises do not have any microbiologists on board, as explained by the following quotation 

from one of our interviewees: 

 

“If you're really honestly doing anything microbiological on a ship, you're 

probably doing some culture-based analysis, which is important…but it is also 

extremely limited, extremely slow… So the motivation to sail is not that high… 

10 weeks out of a semester, you may lose teaching, you lose a publication, you 

lose a meeting, and when you're trying to get tenure, it may be more valuable to 

stay here. And a lot of our colleagues have chosen to stay home because they lose 

a lot by going to sea” (C-DEBI-4). 

 

The absence of a microbiologist can mean nobody advocating for microbiology during 

negotiations around the allocation of cores to cruise participants, resulting in fewer and 

poorer quality cores allocated to microbiology: 

 

“Due to limitations and then lack of lobbying because I was not out at sea and 

there was no microbiologist out at sea, I only got about 50 samples of my 150. 

And then half of those were from the top and bottom sections of the core, which 

means most of those are probably not useful to me. And there were no 

contamination checks that were done on any of the cores, so the integrity of each 

one of my samples is then questioned” (C-DEBI-4). 

 

A group of leading deep subseafloor biosphere researchers has identified “a dramatic 

need to standardize how we do our science, but then also there is a need for us to 

standardize how the samples are handled from the ship” (C-DEBI-4). Their efforts 

include workshops at international conferences and high-profile articles in journals [93]. 

To reconfigure the community infrastructure, C-DEBI microbiologists are reconfiguring 

their individual and small team scientific practices in their own onshore laboratories. 
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Similarities between C-DEBI and CENS reflect the conditions under which researchers in 

little science domains share data. Both of these research sites have difficulty managing or 

curating their datasets due to the heterogeneity of expertise and competing research goals 

of collaborators.  

 

Most data exchange in CENS was between individuals. CENS researchers reported that 

they were generally willing to share data. The frequency of data release was low, and 

accomplished by a variety of means. Some released data upon request, as this scientist 

explained: 

 

“If such a request [to share data] arrives, then we immediately grant it because we 

would like to actually share all of our information and all of our systems to the 

wider academic community. And so such a request arrived before, and [we] 

provided the data immediately, and we not only share the data but also the 

platforms we developed. We would like other researchers to adopt them and use 

them in their research as well and there are many cases when we did that as well” 

(CENS-3). 

 

Other researchers, however, attached conditions to data release, whether due to a sense of 

ownership or the amount of work that had gone into collecting them [18,119]; for 

instance: 

 

“If you walk out into a swamp... out in this wacky eel grass and marsh, along with 

your hip-waders and [are] attacked by alligators... and then you do it again and 

again and again... I don’t [want to] share that right away. I [want to] analyze it 

because I feel like it’s mine” (CENS-4). 

 

Although the life cycle of CENS began eight years earlier than C-DEBI, with interim 

technological advances affording greater opportunities to share data, similar approaches 

to interpersonal exchanges of datasets are observed within C-DEBI. However, one 

critical difference is that C-DEBI is subject to NSF requirements to formulate a data 

management plan, whereas CENS ended before these requirements came into effect. As a 

result, C-DEBI is now mandating open access to data that support their publications, and 

implementing that policy in their data management technology.  

 

Larger Scale Science: SDSS and LSST 
The Sloan Digital Sky Survey and the Large Synoptic Survey Telescope are large-scale 

projects to generate massive datasets in astronomy. In both of these projects, new 

instrumentation, the establishment of collaborations and sharing of expertise, and, above 

all, the resultant datasets, will be the scientific legacy products. However, SDSS and 

LSST also offer several important contrasts. Advances in technology enable LSST to 

collect data at greater volumes and velocity than SDSS, which influences the means by 

which they release data to the community. Differences in scientific goals also contribute 

to choices of instruments, areas of the sky to survey, types of data to collect, and patterns 

and rates of data collection.  
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LSST will collect data to address a broader set of scientific research goals than did SDSS. 

These scientific drivers require more complex negotiations among the collaboration 

members than was evident in SDSS. While confident that they can address all of their 

science goals with a single dataset [69:7], eleven distinct Science Collaborations [83], 

and the LSST Science Advisory Council are the current community input mechanisms 

where negotiations are taking place. LSST claims that, “no other project matches this 

diversity and LSST’s potential impact on society in general” [69:33]. On the other hand, 

SDSS was more highly focused on mapping galaxies, quasars, and stars, for which it was 

not necessary to ensure compatibility of resources.   

 

SDSS provided project data annually in the form of data releases, which were available to 

the entire world. These finely processed, public data releases were seen as an innovative 

approach to scientific dissemination. One astronomy professor involved in SDSS stated: 

 

“Overall, I would say that the creation of the SDSS archives was one of the major 

achievements of SDSS; as opposed to the data, the fact you can get at the data 

and… it's freely accessible with no [restrictions]... The major success of the whole 

project is the fact that thousands of people have been using this data” (SDSS-1). 

 

LSST is in the midst of planning a three-pronged approach to distributing data [69:22–

23]. It will provide annual data releases similar to SDSS; however, these releases will not 

be made public globally, but instead will be made available to participating countries and 

institutions. In addition to the data releases, LSST’s plans for data release include a 

strategy to provide nearly immediate publicly available alerts of transient objects and 

events that may require follow-up investigation. Finally, LSST also plans to provide 

access to the processing and storage capabilities for end-user analyses. While SDSS was 

innovative in terms of globally dispensing annual data releases, LSST expects to innovate 

with nearly immediate turnaround of the notification of objects for follow-up and by 

enabling end-users to execute “customized codes at the LSST data centers” [69:23].   

 

A significant number of personnel from SDSS now occupy senior leadership positions 

within LSST, and we are studying the types and degrees of knowledge that are 

transferred from SDSS to LSST. This continuity of expertise is expected to improve 

LSST as it faces similar challenges in collecting, managing, and analyzing data at 

unprecedented scales [69:11]. A team member of both SDSS and LSST explained data 

access requirements as a responsibility associated with public funding:   

 

“The reason why the LSST was ranked number one in the Decadal Survey of 

Astronomy… I believe it's primarily due to the fact that it will be [a] survey for 

everyone…. We have [a] team of [a] few hundred people who work on the 

project, but they all understand that we're all going to be surveying not for 
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ourselves but survey for everyone in [the] US and hopefully around the world. 

Data will be public and we are all okay with that” (LSST-2). 

 

Earlier Stages of the Life Cycle: C-DEBI and LSST 
Many comparisons between C-DEBI and LSST can be made in terms of the scale of data, 

stage of development, diversity of expertise, organization, and scope of infrastructures. 

An additional comparison is temporal scale: the ramping-up of data collection at the early 

stages of the C-DEBI life cycle is relatively brief compared with the two decades from 

initial conception of LSST to the anticipated commencement of data collection. C-DEBI 

data collection is designed and often performed by the researchers who will use the data 

themselves in the near future. In contrast, LSST must be designed in anticipation of 

research questions and technologies many years hence, including the hope that “new and 

unanticipated phenomena will be discovered” [84:14].  

 

The range of scientific disciplines in LSST is narrower than in C-DEBI, but broader than 

most astronomy projects. We are studying closely how these disciplinary differences 

shape collaborative practices. C-DEBI scientists come from a wide range of scientific 

disciplines, which contributes to greater diversity of data practices along three 

dimensions. One dimension is the types of data produced, with one of our interviewees 

reporting that they generated and used datasets covering “metagenomics... genomics... 

isotope geochemistry... bioinformatics... mineralogy, proteomics, geochemistry, geology” 

(C-DEBI-5). A second dimension is the methods used to produce similar types of 

datasets: individual scientists have been observed making disparate choices at almost 

every stage of the data life cycle, such as the choice of methods to extract DNA. As 

explained by one of our interviewees, “the DNA extraction, or RNA extraction procedure 

is just all over the place. I mean, we all use different types of DNA extraction 

procedures” (C-DEBI-6). The third dimension is the recordkeeping practices about the 

methods used to generate datasets; as another interviewee explains, "people were keeping 

lab notebooks…But it was kind of more all over the place” (C-DEBI-7). This mix of 

practices makes data management in C-DEBI particularly challenging.  

 

The infrastructure available to these respective communities to manage, curate, and 

access data also differs considerably. Astronomy has a relatively sophisticated 

infrastructure, with more data becoming accessible through investments in stewardship 

and in knowledge infrastructures [13]. Conversely, C-DEBI was established to address 

the “lack [of] the infrastructural coordination mechanisms to guide and support the 

research” in the domain of deep subseafloor biosphere research [42:1]. LSST can build 

upon more existing practices and infrastructures than can C-DEBI. For instance, LSST is 

using expertise from prior sky surveys, reusing code from SDSS, and using data from the 

Dark Energy Survey to test the software and infrastructure [51]. However, existing 

astronomy practices and infrastructures also serve as constraints on LSST innovation, 

whereas C-DEBI partners have more flexibility. They also have a lower threshold for 

success, as reflected in this discussion of techniques to extract DNA: “My philosophy is 

pick one that's not terrible, accept the fact that they're all gonna be bad and just move 

forward with what you got” (C-DEBI-6).  
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LSST has staff dedicated to developing the data management infrastructure, which will 

take a decade or more to complete. Scientists affiliated with C-DEBI, in contrast, do not 

have data management teams to support their research (although C-DEBI has recently 

appointed a postdoctoral researcher to focus on data issues). Their immediate scientific 

results are of primary importance; data play instrumental roles in the production of these 

results. Scholarly credit accrues for scientific publications; little or no credit accrues for 

the collection of data per se, as one of our interviewees explains: 

 

“There’s a community of scientists who are…thinking about the process of data 

analysis, and thinking about how to get rewarded, making sure that scientists get 

rewarded for doing a good job with sharing their data…I would say that that 

community is definitely a minority” (C-DEBI-8). 

 

By contrast, in the current design and construction phases of LSST, credit accrues for 

developing data management software and for using simulated data to guide the future 

operation of the telescope, its components, and data collection. The interests of LSST 

collaboration members are well served by developing and deploying digital libraries. 

Both C-DEBI and LSST have stated clearly their aspirations for wide accessibility and 

circulation of their data [42,84].  

 

Later Stages of the Life Cycle: CENS and SDSS 
Operational funding has ceased for both CENS and the first two phases of SDSS, 

providing opportunities to assess data management strategies at the end of project life 

cycles. These sites are very similar in some respects and dramatically different in others. 

Both projects developed new instrumentation, enabled new research questions to be 

asked, and produced new kinds of data for their domains. They made important 

contributions in their publications, fostered new collaborations, and graduated students 

with new expertise. They are similar organizationally, being loose confederations of 

researchers from participating institutions. Where they differ is in the mix of expertise, 

purposes for collaboration, forms of data, and relative value of their research products.  

 

CENS was established as a multi-disciplinary center focused on developing new 

technologies for scientific, medical, social, and educational domains. Technology 

researchers benefited from access to real world problems to solve. Science and other 

application domain researchers benefited from new technologies to collect, analyze, and 

interpret their data. CENS was composed of many small projects, with data products that 

are small in size, large in number, heterogeneous, and complex. It also included teams 

that were large in size and widely distributed, with many locations for data collection, 

and substantial funding. While CENS had a sizable amount of funding, on a scale with 

some “big science” projects, the scientific activities were highly distributed and data 

practices were largely “little science” in character. 

 

In CENS, data were shared mainly within research teams [119]. SensorBase, the most 

successful of several efforts to share data internal to CENS, was used only by a few 
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teams and was not sustained beyond the end of the Center. The website, which had public 

and private areas, was the means by which slides, images, and some datasets were shared. 

One of the staff reflected on how the website might have been used more effectively for 

sharing data: 

“This is more of an output thing than a sharing one, but it's kind of a sharing one 

in that, the website was grotesquely out of date throughout the entirety of CENS. 

And it's not that that information was not available. … in hindsight, there should 

have been some sort of mechanism for that sharing data to happen. … The other 

one that was really difficult that I see other centers being more successful with is 

photo repositories… Especially looking back now, because it's going to be 

impossible virtually to get, and ask somebody to go back to 2002 and look for a 

photo of XYZ is going to be virtually impossible… I mean, it's really up to the 

way CENS ran, it was really up to the area leader or PI to take care of that. There 

could've been a little bit more systematic approach at updating that stuff” (CENS-

5). 

 

SDSS is a large project in that it was planned and executed over the course of decades, 

with the collaboration of hundreds of individuals across 25 institutions [1], and a unified 

outcome, that of a 2.5-meter telescope installation in New Mexico yielding data of high 

velocity and volume. The legacy of CENS mostly resides in publications, collaborations, 

technologies (including software code), and educational outreach. While the legacy of 

SDSS also includes those elements, the main feature of this legacy is the SDSS datasets.  

 

The ramping down of both projects was a time for reflection and an opportunity for 

partners to reassess their research directions. CENS and the first two phases of SDSS 

each ended officially when their project funding finished, but their research continued in 

other ways. Faculty at CENS were members of academic departments and of the Center, 

so when CENS ended they remained in their respective departments. Other than faculty 

members, most CENS participants were employed on grants. The few people employed 

by the Center were administrative staff and a few research staff; these positions 

terminated with the end of funding. Many of them secured positions in other departments 

or other CENS partner institutions. CENS students graduated, carrying their expertise and 

institutional memory to other academic institutions and to industry. Some of the CENS 

research projects continued under other funding. A number of CENS alumni started new 

large projects such as Mobilize and Nexleaf which came out of CENS and use similar 

technologies [47,91,113].  

 

Like CENS, SDSS faculty researchers also were members of academic departments. The 

cohort of administrative staff in SDSS was more stable than in CENS, as many were part 

of the administrative structure of the larger astronomy community. Staff employed by 

SDSS grants to conduct research or to work on instruments, technology, and software 

continued on to SDSS-III, to other astronomy projects, to other domains, or entered into 

industry. Students funded by SDSS often graduated to SDSS partner institutions where 

they could continue their research. SDSS-I and II were so successful that further funding 
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was sought, and many partners continued to collaborate on SDSS-III and SDSS-IV. 

These subsequent projects add data to the existing dataset and address new research 

goals. The human expertise, technologies, and collaborator relationships developed in the 

early phases of SDSS contributed to the success of later projects and to LSST, which 

employs some former SDSS team members. 

 

The disposition of data was the most pronounced difference between the projects. At 

CENS, the stewardship of data resources fell to individual investigators and teams rather 

than being an institutional priority. Researchers were not prepared to deal with their data. 

Datasets in CENS were seen as a means to publications, but not as products with their 

own value. To the question of what will happen to their data, a researcher replied, “Well, 

our project is going to continue for a couple of years so we haven't considered it. But 

yeah, I don't know what will happen with all the data that’s on the servers” (CENS-6). 

 

One reason for the minimal data release was the lack of repositories to which data might 

be contributed. Seismology was the only domain for which a community repository 

existed. Some genomic data were contributed to biological databases. Software code was 

sometimes deposited for public use. No comparable resources existed for ecology, 

environmental sciences, or most of the other CENS domain areas [119]. Publications are 

the primary research assets that remain available from CENS. Largely through the efforts 

of the CENS Data Practices team, which was the predecessor to the Knowledge 

Infrastructures team, the CENS publication repository was created within the University 

of California’s eScholarship system [20,88,117]. The team also developed a data registry 

as part of the annual reporting system to NSF. The CENS data registry was minimally 

populated by CENS researchers and contains only metadata records. It was later 

developed into a university data registry by the UCLA library [85]. Administrative and 

research staff are adding metadata records for CENS datasets to this registry. A registry 

documents the existence of data and provides contact information for access; it does not 

hold datasets per se. 

 

SDSS-I and II, in contrast, executed formal plans for the uniform acquisition, processing, 

and short-term delivery of their data, and started planning for long-term stewardship early 

in the project. As one researcher remembers: 

 

“It didn't take us very long to figure this out that the value of the data we were 

collecting was enormously great, and we needed it to... find some path to preserve 

it into the indefinite future… We started to say, ’Okay, it's time that we started to 

get a plan.’ But I was actually looking through some of my documents, and it was 

clear that when we transitioned from SDSS-I to SDSS-II, we were already well 

under way of thinking about what we were going to do… You think about what 

do you want. You want stability. So university libraries are gonna be around for a 

long time” (SDSS-1). 
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Discussion  

Managing research data is a knowledge infrastructure problem that cannot be addressed 

by individual researchers or projects alone, regardless of project scale or stage of life 

cycle. A wide range of expertise is required, as are new forms of collaborations. Standing 

by to accept research data at the end of a project is but one role for digital libraries and 

librarians. The real challenges lie in designing digital libraries to assist in the capture, 

management, interpretation, use, reuse, and stewardship of research data. Opportunities 

and challenges for the digital library community are plentiful. 

 

The Knowledge Infrastructures project is the first study of data practices and 

infrastructures conducted at this scale. The four sites studied exhibit a wide array of 

characteristics that influence the requirements for digital libraries, especially the types 

and degrees of openness within these communities. The larger projects made more 

explicit plans for data release and invested more heavily in digital libraries systems. 

Datasets, as sustained in SDSS digital library systems, are their primary scientific legacy. 

Data resources are similarly central to the research goals of LSST. These large sites have 

to negotiate with multiple stakeholders to make their data accessible. In contrast, 

investments in digital libraries for C-DEBI began in earnest several years into the 

research project and have yet to be fully implemented. CENS, which was established well 

before funding agency requirements for data management plans were promulgated, made 

minimal investments in digital library systems or services. CENS researchers were 

willing to share their data, but had few mechanisms, incentives, or resources to do so. 

Negotiations about data access were more often internal to CENS or between CENS 

researchers and external parties who requested access to their data [119]. 

 

Our pairwise comparisons between sites reflect the problematic nature of both of our 

critical dimensions: scale of research and stage of life cycle. Previous studies of scientific 

data practices and life cycles typically either characterize the domain of study as big 

science [55,114] or small science [19,35,63]. Instead, our research findings suggest that 

projects often combine characteristics of big and small science. Data may circulate at 

various scales, sometimes aggregating into larger datasets and sometimes dispersing into 

smaller units [39].  

 

The role of digital libraries may depend not only on the scale of data for a research 

project, but also on its scientific goals. The astronomy projects built digital library 

services into their research goals to ensure that the datasets are a legacy product. 

Astronomy data are reused for many years after they are collected. Much effort is 

devoted to the design of systems and the curation of data. In contrast, smaller science 

research conducted at CENS and C-DEBI is more concerned with immediate scientific 

breakthroughs than with the data that lead to those findings. The data are a means to an 

end, which is the publication of findings in scientific papers. Digital libraries may serve 

more transient purposes for current access to research resources in these smaller science 

projects. 
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By comparing the earlier and later stages of two astronomy surveys, LSST and SDSS 

respectively, we see that large telescope projects may not fully exemplify big science, as 

they are usually understood [89,105]. Both projects have little science characteristics that 

shape the big science context, and vice versa. The work to build LSST infrastructure 

depends upon small teams that test and evaluate various components. 

 

The opposite is true of C-DEBI. Despite having the surface characteristics of little 

science, the research depends on big science facilities, namely the Integrated Ocean 

Drilling Program. The IODP, which is a primary source of data for C-DEBI, shares many 

of the hallmarks of big science, in terms of the cost [77], large-scale facilities [55], 

international collaboration [76], organization of the work on board expeditions [32,61], 

and in data and other knowledge product management practices [9,13,61].  

 

The data life cycle in our C-DEBI case study unfolds across multiple scales, and these 

contexts have complex relationships to each other.  The priorities and practices in one 

context shape, influence, enable, constrain, and mandate practices in the other. The scarce 

resources of IODP cruises (ship space, cores, and data) and resultant negotiations about 

the distribution of these resources both enable and limit the progress that can be made in 

individual scientists’ onshore laboratories. In response, the scientists try to reconfigure 

their laboratory practices to bring about desired changes in the operation of the large-

scale infrastructure of IODP cruises. 

 

Another comparison between these cases relevant to digital libraries is the temporal scale 

of system design and data collection. In the smaller scale projects comprising CENS and 

C-DEBI, data management tools are selected, designed, and used by the same 

individuals. Technologies can be readily adapted to the problem at hand. Conversely, in 

the multi-decade time scale of developing larger research instruments and facilities in 

astronomy, data management technologies, policies, and practices are designed for 

anticipated future uses and users. Those developing the digital libraries may be different 

individuals, with different expertise, than those who curate the data. That is certainly the 

case with SDSS, where astronomers, computer scientists, software engineers, and other 

technologists designed the instruments and data collection mechanisms, then handed off 

the dataset to research library staff about 20 years later.  

 

Conclusions 

The Knowledge Infrastructures project is studying the transfer of people, technology, 

data, and knowledge within and between four distributed research sites. The particular 

combination of these factors in each site influences requirements for their digital libraries 

and for the expertise necessary to manage their data. Each of our conclusions has 

implications for knowledge infrastructures for science generally, and for the future 

directions of our own research.  
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Knowledge Infrastructures at Scale 
The most consistent finding throughout our analyses is the influence of scale factors on 

data practices. By juxtaposing sites with canonical characteristics of little science and big 

science, many dimensions of scale come into view. These include not only the scale of 

research facilities and numbers of people involved, but also the numbers of teams, 

countries, and locales; the amount of money invested; the variety of disciplines and 

research domains; the volume, variety, and velocity of data; duration in time; and the 

scale of infrastructures required to conduct the research enterprise. The two larger science 

projects, the Sloan Digital Sky Survey and the Large Synoptic Survey Telescope, require 

large investments in facilities, partnerships across many locations and countries, and a 

long time frame to conduct their research. Upon closer inspection, small teams play 

important roles within the project work. Substantial portions of that work, especially in 

the early stages of the life cycle, converge into the larger knowledge infrastructure. Other 

parts of the work stay local, especially in the latter parts of the cycle when data can be 

reused in combination with other data to derive new findings. Whereas most of the work 

in the Center for Embedded Networked Sensing and the Center for Dark Energy 

Biosphere Investigations could be conducted locally, C-DEBI depends upon the large 

facilities of the IODP cruises for much of its data. 

 

We found different combinations of project scale and mix of disciplines. While SDSS 

and LSST include participants with many specialties of astronomy, physics, and 

computing, project expertise tends to be within the bounds of the physical sciences and 

engineering. CENS and C-DEBI include participants from a broad array of physical and 

life sciences; the majority of CENS partners were from computer science and 

engineering. Whereas both SDSS and LSST have common goals to construct the 

technology (telescopes and instruments) and supporting methods and infrastructure for a 

massive and long-term sky survey, CENS and C-DEBI have more divergent goals. The 

latter are large endeavors, consisting of hundreds of participants over a period of five to 

ten years, with the goal of bringing together diverse expertise to advance the science and 

methods of their research domains. They explore many methods and technologies toward 

these ends. C-DEBI would like to have a common data repository, whereas CENS had 

different concerns. The broad array of disciplines in the smaller science sites leads to 

minimal role specialization, with each investigator and team exploring particular 

questions with particular methods and technologies. The self-contained nature of 

individual teams within CENS and C-DEBI makes it difficult for each center to converge 

on common goals such as data management. The narrower array of specialties and the 

common scientific goals of the larger projects lead to greater role specialization. To 

construct a telescope, convergence of methods, technologies, and data is essential.  

 

Types and degrees of openness vary along these dimensions of scale, interacting with 

many other factors. Data release is central to the scientific goals of SDSS and LSST. Data 

repositories are part of the initial project goals and design, which leads to standardized 

methods of data collection and management. However, decisions about what can be 

released, when, and to whom vary between SDSS and LSST, and between observational 

data and software code. Other stakeholders, including funding agencies, may be the final 
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arbiters of openness. The two smaller science projects also vary on types and degrees of 

openness. CENS aspired to releasing more of their data, but had great difficulty finding 

the means to do so. C-DEBI has similar aspirations, and is developing the means to 

manage, share, and reuse their data. In all four of these sites, releasing software code 

appears easier to accomplish than is releasing research data. Again, these factors vary 

considerably by local circumstance. 

 

Knowledge Infrastructures in Rhythm 
Investments in knowledge infrastructures vary greatly over the life cycles of the four sites 

studied. Consistent with others’ findings, patterns of infrastructure building are associated 

more with rhythms of collaboration than with life cycles per se [70,71]. In these four 

projects, rhythms include stages of the project and of collaborative partnerships; the 

maturity of tools, standards, practices, methods, and protocols; data production; careers; 

and funding. In SDSS and LSST, a decade or two of work precedes data collection. 

Astronomers may devote large portions of their careers to developing the facilities 

necessary to acquire the data essential for their science. Once acquired, those data must 

be cleaned and processed through a pipeline. Most large astronomy projects release those 

processed data on cycles of a year or so.  

 

CENS and C-DEBI also adapt their practices to the time frames of their data collection 

technologies. Turnaround time for designing or adapting sensor technologies may be a 

matter of months, although some technologies took longer to develop and deploy. 

However, the IODP cruises on which C-DEBI depends for data require long-term 

commitments, which include the time to apply for ship space, participate in cruises, and 

process the resulting data. 

 

The time frames of these projects also influence their types and degrees of openness. For 

example, SDSS and LSST investigators may have proprietary access to the data prior to 

their public release. LSST is proposing a multi-pronged approach to data release, which 

includes making unprocessed data available immediately. CENS launched long before 

the current pressures from funding agencies to release data at the time of publishing 

journal articles. Two research domains within CENS, seismology and genomics, had 

discipline-specific data release requirements, and these obligations were met. C-DEBI 

launched prior to current NSF data management plan requirements. They implemented 

these requirements retroactively, and are incorporating data management practices in the 

mid-stages of project life cycles.  

 

Future Research Directions 
The research reported here has raised as many new questions about scale, life cycle, and 

openness as it has answered. We continue to pursue our initial questions, along with new 

ones, and are exploring new sites for comparison. Although our analyses are broad in 

scope and rich in detail, our methods do not yield statistical comparisons. Our findings 

can be compared to other domains through similar methods. Most of the identified issues 

vary by local conditions, so they would be difficult to identify through survey methods. 
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Further document and network analyses are in progress. Knowledge infrastructures are 

complex ecologies, adapting continuously to local and global conditions and to changes 

in technology, policy, and stakeholders. Long-term, multi-method studies such as those 

reported here are necessary to understand the roles of digital libraries and digital library 

workforces in science. 
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