
Software in the Scientific Literature: Problems with
Seeing, Finding, and Using Software Mentioned in the
Biology Literature

James Howison
School of Information, University of Texas at Austin, 1616 Guadalupe Street, Austin, TX 78701, USA. E-mail:
jhowison@ischool.utexas.edu

Julia Bullard
School of Information, University of Texas at Austin, 1616 Guadalupe Street, Austin, TX 78701, USA. E-mail:
julia.a.bullard@gmail.com

Software is increasingly crucial to scholarship, yet the
visibility and usefulness of software in the scientific
record are in question. Just as with data, the visibility of
software in publications is related to incentives to share
software in reusable ways, and so promote efficient
science. In this article, we examine software in publica-
tions through content analysis of a random sample of 90
biology articles. We develop a coding scheme to identify
software “mentions” and classify them according to
their characteristics and ability to realize the functions
of citations. Overall, we find diverse and problematic
practices: Only between 31% and 43% of mentions
involve formal citations; informal mentions are very
common, even in high impact factor journals and across
different kinds of software. Software is frequently inac-
cessible (15%–29% of packages in any form; between
90% and 98% of specific versions; only between 24%–
40% provide source code). Cites to publications are par-
ticularly poor at providing version information, whereas
informal mentions are particularly poor at providing
crediting information. We provide recommendations to
improve the practice of software citation, highlighting
recent nascent efforts. Software plays an increasingly
great role in scientific practice; it deserves a clear and
useful place in scholarly communication.

Introduction

Software is increasingly crucial to scholarship; it is a key
component of our knowledge infrastructure (Edwards et al.,
2013). Software underlies many scientific workflows and

incorporates key scientific methods; increasingly, software
is also key to work in humanities and the arts, indeed to work
with data of all kinds (Borgman, Wallis, & Mayernik, 2012).
Yet, the visibility of software in the scientific record is in
question, leading to concerns, expressed in a series of
National Science Foundation (NSF)- and National Institutes
of Health–funded workshops, about the extent that scientists
can understand and build upon existing scholarship (e.g.,
Katz et al., 2014; Stewart, Almes, & Wheeler, 2010). In
particular, the questionable visibility of software is linked to
concerns that the software underlying science is of question-
able quality. These quality concerns are not just technical,
but extend to the appropriateness of software for wide
sharing, and its ability to facilitate the codevelopment that
would make efficient use of limited scholarly funding
(Howison & Herbsleb, 2013; Katz et al., 2014).

The link is two-fold: First, when software is not visible, it
is often excluded from peer review; second, its lack of
visibility, or the particular form of visibility, means that
incentives to produce high-quality, widely shared, and code-
veloped software may be lacking. A well-functioning system
would assist not only the goals of understanding and trans-
parency, but also the goals of aiding replication (Stodden
et al., 2010), complementing the availability of publications
such that “the second researcher will receive all the benefits
of the first researcher’s hard work” (King, 1995, p. 445).

The situation with software is broadly analogous (but not
identical) to that of data in publications; indeed, all data are
processed by software in some form (Borgman et al., 2012).
Nonetheless, there are relevant differences. Accordingly, our
inquiry into the visibility of software in scholarly commu-
nication is complementary to recent interest in data citation.
In sum, then, the relationship of software to the scholarly

Received August 20, 2014; revised February 19, 2015; accepted February

20, 2015

© 2015 ASIS&T • Published online in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/asi.23538

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, ••(••):••–••, 2015



publication ought to be of key concern to those interested in
scholarly communication, data in scholarship, and, indeed,
the overall functioning of scholarship, knowledge infrastruc-
tures, and innovation.

In this article, we ask how software is currently visible
in the literature and the extent to which this visibility con-
tributes to achieving the normative ideals of scientific prac-
tice. Citations to a formal bibliography are important, yet
formal citations are not the only form of visibility: Soft-
ware is also visible in less-formal ways, including foot-
noted URLs to web pages maintained by software projects,
parenthetical notes akin to those used for purchased scien-
tific consumables, and simply discussed in the text in
passing. Therefore, we write of software “mentions,” inten-
tionally choosing a word with casual and wide-ranging
connotations, including the full spectrum of formal to
informal visibility. While we were interested in cases
where it was apparent that software was used, but not men-
tioned at all, such as statistical analyses, indeed some soft-
ware authors claim this to be a very common problem
(Howison & Herbsleb, 2011); but, for this study, we
focused only on explicit mentions.

Specifically, we undertake a content analysis of a random
sample of 90 journal articles from Biology, stratified by
journal impact factor. We develop a reliable content analytic
scheme to identify mentions of software in the literature and
to understand how well these mentions achieve desirable
functions, such as identification of an artifact, providing
credit to its creators, and assisting others to build on the
scholarship. We use this scheme to examine each identified
software mention for its ability to realize these functions.
Overall, we aim to provide a systematic motivation and basis
for the pressing task of designing improved systems of vis-
ibility for software in the scientific literature.

Literature Review

Much of the foundational literature on scholarly citation
examines the practice of citing, particularly the relationship
indicated between scholarly publications (Cano, 1989;
Lipetz, 1965; Moravcsik & Murugesan, 1975). Studies in
the meaning of citation have attempted to clarify the pos-
sible relationships between citations and the works cited,
providing typologies of credit giving (Moravcsik &
Murugesan, 1975), associating the location of the citation
with the type of credit given (Cano, 1989), and identifying
the relevant element of the cited work (Lipetz, 1965). These
have been used for automatic classification to identify rel-
evant works (Pham & Hoffmann, 2003) and augment impact
factor calculations (Teufel, Siddharthan, & Tidhar, 2006). In
general, this scholarship is a practice literature that examines
the nuances of an established practice to interpret these acts
and improve our understanding of how science works or our
information retrieval systems for science.

More recently, though, changes in publication technology
have returned the discussion to other basic functions, such
as identification and assistance in finding cited objects.

Achieving these functions, long since addressed in standard-
ized citation formats for print publications, require new
methods for digital works. A familiar example of this trend
is the citation of online works and the phenomenon of “link
rot” (Klein et al., 2014; Koehler, 1999). To the extent that
the location of online works is not fixed, citations cannot
reliably facilitate access to cited works (Lawrence, 2001;
Sellitto, 2005), undermining the verifiability and repeatabil-
ity integral to the scientific method (Goh & Ng, 2007). As
publication technology changed, the literature shifted back
from studying the meaning of citations to addressing
questions of design: How ought scholars reference other
scholarly works?

This article thus continues the traditions of citation schol-
arship, seeking to contribute to both a literature of practice
(“How do scientists mention software?”) and a literature of
design through assessment (“How well do the current prac-
tices do their job”) leading to proposals for improvement
(“How ought scientists mention software?”). Finally, we
seek to raise, even if we cannot yet answer them, questions
of change (“How best can the practices relevant to software
visibility be altered?” and “How might proposed citation
practices influence other areas of scientific conduct”?).

Data Citation

Design questions are at the heart of the literature on data
citation, including how citations can provide identification
of, location of, and access to, data, including data sharing,
verification, and replicability (Mooney & Newton, 2012).
Recently, the discussion has gained more urgency given the
possibilities of data sharing online, the present “data deluge”
of available data sets (Borgman et al., 2012), the possibili-
ties of the linked data movement (Mayernik, 2012), and the
adoption of data-sharing policies by granting agencies and
journals (Borgman et al., 2012, p. 1060).

The practices of data citation and data sharing are inter-
twined; data sharing is motivated by the credit-giving appa-
ratus of data citation, but data citation practices can only
develop in a scholarly culture of data sharing (Mooney &
Newton, 2012). The practice literature of data citation has
examined how this dilemma is playing out in contemporary
publications, finding that data citation is still an emergent
practice, neither pervasive nor consistently applied (Simons,
Visser, & Searle, 2013). Findings such as these have led
scholars to call for cultural change in scholarly communi-
cation (Mayernik, 2012) and institutional mandates for data
sharing (Simons et al., 2013).

Even if the need for citation of shared data was clear, the
mechanisms are not yet so clear. Studies of the technical
apparatus of data citation seek to identify the necessary
criteria of adequate citation, such as specificity regarding the
version and granularity of what is being cited (Borgman
et al., 2012; Simons et al., 2013). In particular, scholars are
concerned that data citation include the elements necessary
to provide adequate identification and access to the data set
(Altman & King, 2007; Konkiel, 2013).

2 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



From these discussions of the necessary criteria for func-
tional data citations, a design literature emerges that seeks to
identify the criteria necessary to data citations, assesses to
what extent these are used in contemporary practice, and
proposes design improvements. Criteria include specificity
regarding versions and granularity (Borgman et al., 2012;
Simons et al., 2013) and findability supported by stable
locators (Konkiel, 2013). Empirical studies of data citation
in contemporary scholarship find that data citations tend to
be minimal and incomplete when present at all (Mooney &
Newton, 2012).

Suggestions to improve current practice include both cul-
tural and technological changes. For example, technical pro-
posals, such as digital object identifiers (DOIs) for data sets
(Simons et al., 2013), as well as new citation standards
(Altman & King, 2007; CODATA, 2013), will allow authors
to cite in a way that supports the findability of data sets.
Design improvements include integrating data citation
counts into altmetrics to motivate data sharing (Konkiel,
2013).

Software Citation

Software citation requires both a practice and a design
literature of its own. Software use and reuse are important
for contemporary scientific methods and scholarly commu-
nication, and verifying, replicating, and building upon these
studies requires adequate, consistently adopted modes of
software citation. The small existing practice literature of
software citation enumerates a number of challenges for
meeting the criteria for credit and location. The barriers to
software citation include all of those identified for data
citation—such as difficulty with versioning and lack of cita-
tion standards—along with complications specific to this
form. For example, Howison and Herbsleb (2013) report
that the constant incremental improvements typical to soft-
ware development are incongruent with structures of recog-
nition and credit in academia. As with the chicken and egg
dilemma in data citation identified by Mooney and Newton
(2012), software citation suffers from a mismatch between
the incentives for software development and sharing and
science outcomes (Howison & Herbsleb, 2011). To the
extent that software development is often proprietary rather
than open, distribution models often run counter to the ideals
of the “Republic of Science,” endangering the verification
and replication functions of citation (Gambardella & Hall,
2006; Ince, Hatton, & Graham-Cumming, 2012).

Some design improvements have been proposed. As with
data citation, proposed solutions are both cultural and tech-
nological in nature; an example of a cultural change is the
push toward adoption of permissive, open licenses for sci-
entific software (Gambardella & Hall, 2006; Ince et al.,
2012), whereas technological solutions include infrastruc-
ture for code sharing and metrics for software contributions
(e.g., Goble, Roure, & Bechhofer, 2013; Katz, 2014;
Stodden, Hurlin, & Perignon, 2012). We will return to sug-
gestions for improvement in our discussion.

One mode of assessing both current practice and proposed
solutions is to compare them against the criteria for citation
identified earlier. Extending the criteria for data citation to
software citation is appropriate given that the practices share
technological challenges and relative novelty in scholarly
communication. The practices are also intertwined: A full
reference to data reuse requires mention of the software
transformations applied to the set (Borgman et al., 2012, p.
1073). From these similarities and the foundational criteria
from traditional citations, we identify the functions of cred-
iting, identification (including versioning), and access (the
ability to obtain the software). The requirement for identifi-
cation, in the case of scientific software, also involves the
configuration settings applied to the program—answering
the question of which elements of the program were used.

Software also introduces some novel requirements for
citations in order to support verification, replication, and
building on others’ work. Verification and replication, in the
case of scientific software, requires not only the ability to
locate the referenced material, but also access and permis-
sion to run the program. In particular, even special purpose
descriptions of algorithms in articles have been found to be
insufficient to replicate analyses; direct access to source
code is vastly preferred (Ince et al., 2012; Stodden et al.,
2010). Further, to build on others’ work requires not just
access to the source code, but also permission to extend the
work, particularly to modify the program or combine it with
other code in particular ways. As we will show, we develop
these characteristics into a specific coding scheme.

Method

We identified a balanced and representative sample of the
biology literature and undertook classic content analysis
based on our development of two reliable content analytic
schemes.

We chose to confine our analysis to a single domain,
trading off broad scientific coverage against achieving a
larger sample size. Biology is a leading domain for the
importance of software in science, given the importance of
computerized data analysis and the rise of bioinformatics.
Some of the most well-cited papers of any kind in any
science are biology software related (Science Watch, 2003).
Because we are interested in contemporary practices, we
confined our sample frame to articles published between
2000 and 2010 (the last complete year when we took the
sample). Scientific attention is concentrated toward certain
journals, albeit different journals in different fields and sub-
fields; overall, the hierarchy of scientific journals forms a
non-normal, exponential-like distribution, such as in Brad-
ford’s law (Bradford, 1934; Brookes, 1985). Such distribu-
tions are difficult to sample from: There is no “typical” item
in such a distribution. It would be problematic to only study
widely read (“top”) journals, but equally problematic to
study only less-well-read journals. Accordingly, we sought
to study a sample balanced for overall coverage and likely
influence.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 3
DOI: 10.1002/asi



We identified a set of 18 biology-related subject headings
in biology using the 2010 Institute for Scientific Information
(ISI) Web of Science (WoS). We took all of the 1,455 jour-
nals included in these headings and sorted them by their
journal impact factor. Previous research has found differ-
ences in practices between higher and lower impact factors
(e.g., Stodden, Guo, & Ma, 2013), and journal impact factor
seemed an appropriate proxy for overall influence or breadth
of readership. Though there are many criticisms of journal
impact factor, particularly for assessing influence of specific
articles or authors, the journal unit of analysis is well suited
for our study given that the policies of journals seem likely
to affect the form of articles. Thus, we divided our journal
list into three groups: The first group of journals included
those ranked 1 through 10 (10 journals), the second had
those ranked 11–110 (100 journals), and the third had the
rest of those ranked 111–1,455 (1,345 journals). We com-
bined the journals with strings for the years (2000–2010)
and weeks (1–52) to yield a sampling frame that covered
each of the journals across the whole time period. We then
randomly selected 90 journal-year-week tuples for each
strata. We worked through this list taking the first 30 issues
listed that appeared to be from journals that publish original
research, as opposed to review journals.

We manually retrieved the issue from the journal website
that was current in the year and week number. When an issue
was dated during or after the chosen week, we chose the
issue that came out before that week. We found two journals
in the sample that we did not have library access to and
discarded these, taking the next journal-year-week tuple. We
also found 12 tuples that were before the first published
volume of the journal (e.g., we sought a 2001 article from a
journal that began publishing in 2006); in those cases, we
discarded that tuple and used the next from the list of 90,
rather than taking the first issue of the journal on the basis
that first issues might be systematically different.

We assessed the content of the chosen issue, identifying
research articles (as opposed to letters, editorials, perspec-
tives, review/survey articles, and other publications, such as
“plant registrations”). In two cases, where our chosen issue
did not have any research articles, we went to the issue
immediately following. From the research articles in the
selected issue, we used a random number generator to
choose one article. We continued this process until we had
30 research articles from each strata, a total data set of 90
biology research articles, as shown in Table 1.

We obtained portable document formats (PDFs) of the
articles and of any supplemental materials (these were often

“methods and materials” online supplements with their own
text and references lists). During coding, we found one
article that was not a biology article (it was a pure math-
ematics article) and we replaced it with an article derived
from the next tuple in the original random selection for that
strata. Appendix A includes a full list of categories in our
sample frame and journals in our sample; Table 2 shows a
distribution of articles from well-known journals in the top
strata by impact factor (we did not intend to only choose
articles from 5 of the top 10; that was simply a result of the
method of randomization).

Our random selection of articles enables us to use our
sample to make estimates about software mentions in the
overall biology literature, because undertaking random sam-
pling means it is reasonable to believe that sampling errors
resulting from our specific sample are normally distributed.
Accordingly, we are able to present 95% confidence inter-
vals (CIs), for the population around the characteristics of
the sample we report, providing upper and lower bounds for
the results we report in the population of biology articles.
These estimates treat each mention as independent, not
adjusting for the reality that ways of mentioning software
may be influenced by authors and journals (i.e., within
articles). This is not ideal, but given that authors are not
necessarily consistent (even within articles) and, more
importantly, readers read widely across journals and articles
by different authors, readers are going to encounter many
varying ways of mentioning software, even if there is some
consistency within specific journals or authors. We con-
ducted the statistics with the R functions, prop.test and
chisq.test (based on Hope, 1968; Newcombe, 1998). The
data set and full analysis scripts are available at http://
github.com/jameshowison/softcite/.

In the analysis to follow, we present results both in aggre-
gate and, in some cases, broken out by journal impact factor
strata. In many cases, our statistical analysis shows no sta-
tistically significant differences between strata, but we do
not rely on those results for our main conclusions. Indeed,
the contribution of this article is toward informing policy
making and prompting the emergence of a design literature
for software mentions in scientific articles; in that context, it
is unclear that any specific size of difference (effect size)
between strata would matter, and without that, it is hard to
estimate the statistical power needed for reliable between-
strata comparisons.

TABLE 1. Summary of sample and sample frame.

Strata 1 Strata 2 Strata 3

Journals in sample frame 10 100 1,345
Articles in sample 30 30 30
Journals in sample 5 23 30

TABLE 2. Numbers of articles included from strata 1 journals

Journal name Article count

Science 7
Nature 5
Cell 7
Nature Biotechnology 5
Nature Genetics 5

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



Coding Scheme Development

Our coding scheme development proceeded in three
rounds: identifying software mentions; coding their charac-
teristics; and coding their functions. In each case, we devel-
oped our coding scheme by iterating between reading the
text of the articles and the existing literature described
earlier.

Identifying software mentions. In round 1, we analyzed the
full text of the articles to identify mentions of software
within an article. We were exhaustive in seeking locations of
possible mentions, including not only the main text of the
article, but also table and figure captions, reference list, and
supplemental materials. We considered coding for situations
where it was apparent that software was used, but not men-
tioned at all, such as when an article presents statistics or
figures, but with no mention of the software almost defi-
nitely used to create them. Unfortunately, whereas this
would be very interesting, we concluded that this would be
too speculative and difficult to achieve reliability in coding;
accordingly, we confined our coding to identifying explicit
mentions of software.

We tested reliability of our ability to recognize software
mentions by having two coders independently code subsets
of articles and then comparing their coding. Reporting
agreement is complicated in this case because the coding
units are not predefined; rather, the coders are picking them
out from the text of the articles; these are thematic coding
units that may be whole paragraphs, sentences, or phrases.
Coders are thus only identifying units they think mention
software, not identifying units they think do not. Further,
software mentions are sparse in the data set. In this sense,
using agreement statistics on, say, a sentence level would
substantially inflate agreement owing to the many sentences
coded as not mentioning software. Given the sparseness of
the thematic units, it is also not necessary to adjust for the
very unlikely case of chance agreement, and therefore we
report straight percentage agreement (and not, say, Cohen’s
kappa), calculated using the “irr” package for the R statistics
program (Gamer, Lemon, Singh, & Fellows, 2012). We
tested the reliability in this way twice: once at the beginning
of coding and once when we trained a new coder.

The first test included 12 articles in the subsample. Both
coders agreed that there were no software mentions in 7 of
the 12 articles. In the remaining five articles, coders
achieved percentage agreement of 68.2%. We identified the
reasons for disagreement in discussion and resolved them
with coding rules (e.g., sentences with two citations for one
software package should be coded as two mentions). The
most complex source of disagreement revolved around
whether a sentence referred to a piece of software or the
abstract scientific model; we discussed rubric to determine
the difference, including brief online searching.

The second test occurred when we trained a third coder,
using a new subsample of eight articles. There was agree-
ment by both coders that six articles contained no software

mentions. Agreement in the two remaining articles was
83.3%, with a single instance where one coder failed to
identify a mention; on inspection, we ascribed this to coder
fatigue and not conceptual disagreement. The high agree-
ment in this second round of training provides confidence
that the issues discussed in the first round were adequately
resolved.

Software mention characteristics. Our second coding
scheme identified characteristics of software mentions.
These codes are shown in Table 3. We tested the reliability
of this scheme by applying them to the mentions coded in
the 12-article subsample discussed earlier; this set included
32 mentions drawn from the five articles that mentioned
software. Because this coding involved applying codes to a
preagreed set of mentions, we report intercoder reliability
using Cohen’s kappa. Specifically, we use “Byrt’s kappa”
because it adjusts for unbalanced prevalence (i.e., when one
value, negative or positive, is rarely used) (Byrt, Bishop, &
Carlin, 1993).

Owing to the fact that many mentions come as in-text
citations with references in the bibliography, we linked the
in-text citation and the reference in the data set. We then
applied codes to each element separately. For references, we
used the additional codes shown in Table 4, but, for com-
parison in reporting purposes, we treat a citation + reference
pair as a single mention, which has all of the codes applied
to either element. For example, if one mention included a
creator name in text, whereas another included the creator
name in the reference, this distinction is retained in the data

TABLE 3. Coding scheme for mentions of software.

Code Definition Agreement (kappa)

Software name The name of the software
package

k = 1

URL A web address for the software
or project

k = 1

Version
number

A version number (or source
code label) identifying a
specific version of the
software

k = 1

Date A date used to indicate a version
of the software (not date of
article or reference)

k = 1

Configuration
details

Any mention of configuration of
the software

k = 0.75

Software used For mentions of software that
was used in the research

k = 0.875

Software not
used

For mentions of software that
the authors did not use (e.g.,
they discuss why they did not
use particular software, or the
method realized in the
software)

k = 1

Creator A mention of the creator of the
software (could be applied to
in text mention or reference)

k = 1

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 5
DOI: 10.1002/asi



set, but, in the analysis reported on in this article, both would
be reported as a single mention that included a creator name.

We standardized the software names by clustering the
raw names using Jaro-Winkler distance, as implemented by
the R stringdist package (Van der Loo, 2014), and manually
inspecting the clusters (e.g., standardizing “Image J” and
“ImageJ” and components of a single package, such as
BLAST, BLASTP, BLASTN, and so on).

Functions of software mentions. In the third round, we
coded to assess the extent to which the mention performed
the functions of citation identified earlier (e.g., location,
credit-giving; see Table 5 for full set of codes and explana-
tions). We were generous in seeking relevant information
across the full article when assessing the functions of cita-
tions. That is, we combined all the information supplied
across all mentions of a piece of software in the article in
order to find the software. Once we had sufficient identify-
ing information, we went outside the article text and used
web searching to attempt to locate the software and assess
the possibility of access (for reproducibility), access type
(free or for purchase), source code availability (for

transparency), and ability to modify the code (for building
on the work of others).

Examples of software mentions with codes. From the
article “The seasonal phenology of Bactrocera tryoni (Frog-
gatt) (Diptera: Tephritidae) in Queensland” in the Australian
Journal of Entomology, we identified this sentence:

The DYMEX model we used was as described and parameter-
ised by Yonow et al. (2004).

Which we coded as follows:

An in-text mention to software used by the authors, with a
reference. The software name was “DYMEX”; there were no
configuration details (in the focal text) and no version number,
date, or URL given. The reference was coded as a domain
publication that cited a creator (the authors of the reference).
The software was identifiable and a web search showed it to be
findable. It is accessible in that it is available for purchase. The
source code is not available and there is no permission to
modify the code. The project does not make a request for a
specific citation.

From the article “Insights into assembly from structural
analysis of bacteriophage PRD1” in Nature, we identified
this mention:

Data were analysed with DENZO [41] and the resolution limit
was determined with TRIM_DENZO (D.I.S., unpublished
program).

Which was coded as follows:

Two software mentions, one for “DENZO” (with a reference)
and one for “TRIM_DENZO.” Both were coded as software
used by the authors; neither included version numbers,
configuration details, dates, or URLs. Both were coded as pro-
viding creator information (For TRIM_DENZO, the initials
D.I.S. match the author’s initials, the reference provides
creator information for DENZO). DENZO was found to be
identifiable and findable, but there was no access to the soft-
ware (which also implies no source code or permission to
modify). TRIM_DENZO was coded as identifiable but unfind-
able (implying no source access or permission to modify).

From the article “Yeast Cbk1 and Mob2 activate
daughter-specific genetic programs to induce asymmetric
cell fates” in Cell, we identified this sentence as mention-
ing software:

We captured and analyzed images using a SPOT2e CCD
camera (Diagnostic Instruments, Inc., Sterling Heights, MI)
coupled to MetaMorph imaging software (Universal Imaging
Corporation, Downingtown, PA).

Which was coded as follows:

This was coded as a software mention of software used by the
authors. The software name was “MetaMorph.” There were no

TABLE 4. Additional codes for references in software mentions.

Software publication Formal publication primarily describing
software

Domain publication Formal publication primarily describing
mainline domain science

Users guide/manual Project documentation, typically online but
not published in a journal/conference
proceeding or similar

Project name Reference with just project name
Project page Reference to URL of project

TABLE 5. Codes for functions.

Code Explanation

Identifiable Can we identify which software has been mentioned
(e.g., Is there a name used at all, beyond “a
program we wrote?” Can we find references to
that software, even if we cannot find the software
itself?)?

Findable Given an identifiable piece of software, can we find
an online source that details the software (not
necessarily the software itself, but any official
presence) (e.g., a project page or online manual)?

Findable version Can we find the specific version listed in the article,
if there was one?

Access Can we access the software now? Can take three
values: No Access, Purchase Access, Free Access.

Source available Can we access the source code in any way?
Permission to

modify
Do the creators give permission to modify the

program (if no mention of modification, assume
no)?; if permission only by contact, then no.

Matches preferred
citation

If the project page lists a preferred citation, does the
mention match it?

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



configuration details and no URL, version_number, or date, but
the mention included a creator (“Universal Imaging Corpora-
tion, Downingtown, PA”). The software to be identifiable and
findable. Access was possible through purchase, but the source
was unavailable and modifications were prohibited.

Results

Overview

From the 90 articles total, we identified 59 that men-
tioned software and 31 that did not (65% of articles men-
tioned software). In our sample, articles in higher impact
factor strata were more likely to mention software (77% in
strata 1, 63% in strata 2, and only 57% in strata 3). In total,
we found 286 distinct mentions in the 59 articles that men-
tioned software. The distribution of mentions across articles
is shown in Figure 1; most articles that mentioned software
had relatively few mentions. The two articles with the
highest number of software mentions have over 20 men-
tions. We retained these within our data set.

Classification of mentions. We classified references
according to the scheme previously described. In our
sample, the mentions range in form quite widely. Only

44% of software mentions involve an entry in a references
list, with only 37% being a citation to a formal publication
(another 7% are informal entries in a reference list, includ-
ing either the name or website of the project). Of the 56%
of mentions that do not include references, 31% mention
only the name of the project. Another 18% mention soft-
ware in a manner similar to scientific instruments or mate-
rials, typically mentioning the name in text followed by the
author or company and a location in parentheses. Finally,
some 5% of mentions provide a URL in the text or in a
footnote and 1% mention using some software, but provide
no additional details. Our categorizations, with examples,
are shown in Table 6 and Figure 2, where we provide 95%
CIs for the likely proportion of these types of mentions in
the population of biology articles.

These categories of mentions are useful for understand-
ing the overall diversity of practice, but somewhat fine-
grained for further analysis. Accordingly, we collapsed
these categories into three: Cite to publication (including
cite to user manual); Like instrument; and Other (including
Cite to name or website, URL in text, Name only, or Not
even name). These categories correspond well to two for-
malized forms of mentioning in the literature and a collec-
tion of informal techniques that scientists are using. The
results are shown in Figure 3.

0

10

20

1−10 11−110 111−1455

Journal Impact Factor rank

M
en

tio
ns

 in
 a

rt
ic

le

FIG. 1. Counts of mentions in articles, broken down by impact factor strata.

TABLE 6. Types of software mentions in publications.

Mention type Count (n = 286) Proportion (95% CI) Example

Cite to publication 105 0.37 (0.31–0.43) . . . was calculated using biosys (Swofford & Selander 1981).
Cite to users manual 6 0.02 (0.01–0.05) . . . as analyzed by the BIAevaluation software (Biacore, 1997).

Reference List has: Biacore, I. (1997). BIAevaluation Software Handbook,
version 3.0 (Uppsala, Sweden: Biacore, Inc)

Cite to project name
or website

15 0.05 (0.03–0.09) . . . using the program Autodecay version 4.0.29 PPC (Eriksson 1998).
Reference List has: ERIKSSON, T. 1998. Autodecay, vers. 4.0.29 Stockholm:

Department of Botany.
Instrument-like 53 0.19 (0.14–0.24) . . . calculated by t-test using the Prism 3.0 software (GraphPad Software, San

Diego, CA, USA).
URL in text 13 0.05 (0.03–0.08) . . . freely available from http://www.cibiv.at/software/pda/.
In-text name mention only 90 0.31 (0.26–0.37) . . . were analyzed using MapQTL (4.0) software.
Not even name mentioned 4 0.01 (0.00–0.04) . . . was carried out using software implemented in the Java programming

language.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 7
DOI: 10.1002/asi



Using these categories, 39% (95% CI: 0.33–0.45) of
mentions cite a publication, 19% (95% CI: 0.14–0.24)
refer to software following the guidelines for instruments,
and 43% (95% CI: 0.37–0.49) use some form of other,
informal way of mentioning software.

Figure 4 shows these categories of mentions broken out
by strata. Whereas there are no differences in the use of
cites to publications, we can see that there are significantly
fewer mentions that look like instruments in the low
journal impact strata. The data tend to show higher use of

0.0

0.1

0.2

0.3

0.4

Cite to publication

Cite to user m
anual

Cite to name or w
ebsite

Like
 instrument

URL in text

Name only

Not even name

P
ro

po
rt

io
n

FIG. 2. Types of software mentions. Errorbars show 95% CIs.

0.0

0.1

0.2

0.3

0.4

0.5

Cite to publication

Like
 instrument

Inform
al

P
ro

po
rt

io
n

FIG. 3. Classification of software mentions (collapsed categories).

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



informal citations in lower journal impact strata, but the
95% CIs overlap. These results are consistent with the idea
that journals in higher strata have more formalized mention
styles; nonetheless, even in the top strata alone, 36% (95%
CI: 0.29–0.44) of mentions were informal (categorized as
“Other”).

Characteristics of software mentioned. The mentions we
found were to 146 distinct pieces of software. The majority
of pieces were only mentioned in a single article, with the
most mentioned software being mentioned in only four
articles. We provide the full list of software mentioned in
articles in Appendix B, but given the broad distribution of
software in the literature, our sample size does not allow us
to claim representativeness sufficient to create a “league
table” of software use in science; we include the Appendices
to help readers assess the face validity of our content analy-
sis results.

We classified the type of software using the codes
described earlier (the result of seeking the software online,
using data provided with any mention within an article):
whether the software was accessible; whether one has to pay
money for a license; whether the source code is available;
and whether the software provides explicit permission to
modify and extend the source code (i.e., a free software or
open source license). As illustrated in Figure 5, we were able
to access only 79% (95% CI: 0.71–0.85) of the software
mentioned. Forty-seven percent of the software mentioned
was available without payment (95% CI: 0.39–0.56),
whereas only 32% had source code available (95% CI: 0.24–
0.40) and only 20% gave explicit permission for others to
modify or extend the source code (95% CI: 0.14–0.27).

The characteristics of software are important results
because they reflect the usefulness of software to other sci-
entists, but they do not provide intuitive labels to discuss
types of software. Accordingly, we combine these categories
to produce intuitive labels. The first is “Not accessible.” The
second is for software that must be paid for and for which
the source code is held as a proprietary secret; these we call
“Proprietary” (rather than “Commercial,” emphasizing the
unavailability of source code). At the other end, we place
“Open source” software that is available without payment,
provides access to the source code, and provides explicit
permission to modify the code. Falling between is the “Non-
commercial” software category for software available
without payment, but that does not provide explicit permis-
sion to modify the code; most, but not all, provide access to
source code. This includes many packages written by scien-
tists and made available for other scientists, but either
without specifying license conditions or specifying licenses
that restrict modification. As illustrated in Figure 6, we
found 21% of software to be Not accessible (95% CI: 0.15–
0.29), 32% to be Proprietary (95% CI: 0.24–0.40), 27% to
be Noncommercial (95% CI: 0.21–0.36), and 20% to be
Open source (95% CI: 0.14–0.27).

Our classification of software and mention types enables
us to explore whether particular types of software are
referred to in different ways. For example, it seems reason-
able that Proprietary software would be more likely to be
mentioned using the Like instrument style, given that it is
less likely to have a publication associated with it and was
purchased perhaps from the same budgets as equipment.
Figure 7 shows the relationship between types of software
and types of mentions, which is statistically significant

1−10 11−110 111−1455

0.0

0.2

0.4

0.6

Cite to publication

Like
 instrument

Inform
al

Cite to publication

Like
 instrument

Inform
al

Cite to publication

Like
 instrument

Inform
al

P
ro

po
rt

io
n

FIG. 4. Major software mention types by journal strata. Error bars show 95% CIs.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 9
DOI: 10.1002/asi



(χ2(6, N = 274) = 49.248, p < .05). Indeed, Proprietary soft-
ware is far more likely to be mentioned using the Like
instrument style than other kinds of software; 35% of men-
tions of proprietary software use the Like instrument style
(95% CI: 0.26–0.46), whereas the Like instrument style was
used for less than 10% of mentions of Noncommercial and

Open source software. Similarly, there is greater use of the
Cite to publication style in our Noncommercial and Open
source categories, understandable given that many of these
packages are written by scientists for scientists and include
a citable article. Yet, the clearest takeaway from this analysis
is that there is still considerable diversity in styles; even for

0.0

0.2

0.4

0.6

0.8

accessible free

source_available

modifia
ble

P
ro

po
rt

io
n

FIG. 5. Characteristics of mentioned software.

0.0

0.1

0.2

0.3

0.4

Not accessible

Proprietary

Non−commercial

Open source

P
ro

po
rt

io
n

FIG. 6. Types of software mentioned.

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



Proprietary software, use of informal Other style is statisti-
cally indistinguishable from the use of Like instrument style
and for the other categories of software the Other style is
statistically indistinguishable from the use of the Cite to
publication style.

Citation Functions

Identifying and finding software. We assessed our data set
to see whether the mentions gave sufficient information for
identifying and finding software. We also assessed how well
authors do in providing credit to the authors of software.
Owing to the fact that pieces of software are mentioned in
multiple articles, our data set for this section is larger than
the overall number of pieces of software; a single piece of
software could be mentioned in a functional way in one
article, but without the same functionality in another.
Accordingly, there are 182 unique combinations of software
and articles. As shown in Figure 8, overall, 93% of the
software was identifiable (95% CI: 0.88–0.96) and 86%
provided enough information for us to find the software
online (95% CI: 0.80–0.90), however, this means that at
least 1 in 10 software packages mentioned in articles are
simply not providing sufficient information to find the soft-
ware package. Some 77% (95% CI: 0.70–0.83) provided
some information about the creators of the packages,
meaning that one in five did not.

Information on specific versions was much less fre-
quently provided. Overall, only 28% provided version infor-
mation (95% CI: 0.22–0.35). Yet, many of those projects did
not provide access to earlier versions, meaning that only in
5% of cases (10 actual combinations of articles and soft-

ware) were we able to find the specific versions of software
mentioned in articles (95% CI: 0.03–0.10).

As shown in Figure 9, there were essentially no signifi-
cant differences in these functions across strata.

We sought to understand our findings in more detail by
examining whether different ways of mentioning software
were more likely to perform each function of citation. We
illustrate this in Figure 10. For the basic functions of iden-
tification and providing the ability to find the software, our
data show no statistically significant differences. This analy-
sis, however, does show that mentions that are cites to pub-
lications are much less likely to include version data (only
11% do; 95% CI: 0.06–0.20). Similarly, the issues with not
providing any credit information appear to be almost
entirely driven by informal mentions: Only 43% do (95%
CI: 0.31–0.56), whereas both the Like instrument and Cite
to publication categories all provide at least some credit
information.

Discussion

The evidence presented in this article clearly shows that
the practices of mentioning software are diverse, with sub-
stantial problems in achieving the functions of citation. It
seems that scientists are addressing software primarily by
analogy with other elements that appear in publications,
sometimes treating software as though it were an instrument
or material commercially purchased, sometimes as akin to a
scientific protocol, sometimes treating software as a pair
with a published article, and sometimes simply including
whatever is at hand, from user manuals to URLs and the
names of projects.

Not accessible Proprietary Non−commercial Open source

0.0

0.2

0.4

0.6

Cite to publication

Like
 instru

ment

Inform
al

Cite to publication

Like
 instru

ment

Inform
al

Cite to publication

Like
 instrument

Inform
al

Cite to publication

Like
 instrument

Inform
al

P
ro

po
rt

io
n

FIG. 7. Relationship between software types and mention types.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 11
DOI: 10.1002/asi



These diverse ways of mentioning software are, from a
scholarly communications perspective, certainly better than
nothing, but often fail to accomplish many of the functions
of citation.

Whereas almost all mentions allow for identification of
the software discussed, only between 80% and 90%
provide sufficient information to find that software

(meaning 1 in 10 software packages could not be found).
Yet, software, unlike almost all articles, typically changes
over time, the ability to find a particular version is more
important, and only between 22% and 35% of software
mentions provide that information; moreover, in only
between 2% and 10% of cases can that specific version be
found.

0.00

0.25

0.50

0.75

1.00

identifia
ble

findable

versioned

version_findable

credited

P
ro

po
rt

io
n

FIG. 8. Functions of citation.

1−10 11−110 111−1455

0.00

0.25

0.50

0.75

1.00

identifia
ble
findable

versioned

version_findable
credited

identifia
ble
findable

versioned

version_findable
credited

identifia
ble
findable

versioned

version_findable
credited

P
ro

po
rt

io
n

FIG. 9. Functions of citation by strata.

12 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



Turning to the second, but no less important, function of
providing credit for scientific contribution, and thus reward-
ing the effort required to build reusable software, we find
that between 70% and 83% of mentions attempt to give
credit in some form, primarily through reference to accom-
panying publications or parenthetical mentions of authors or
companies.

As we move further up the list of attributes necessary for
reproducibility and for efficient innovation through building
on the work of others, the situation worsens even further.
Only between 71% and 85% of software is available,
whereas only between 24% and 40% of the software men-
tioned is available in source form, facilitating inspection by
those interested in replicating the research. Finally, only
between 14% and 27% of the software mentioned provides
the most basic condition for extension: permission to reuse
and/or modify the software provided.

What Is to Be Done?

Improving the situation presented in this article requires
action across a number of domains of scientific practice,
both in design and then in driving change. Certainly, one
area is to design and standardize improved forms for
describing software use in scientific articles, reducing the
acceptability of using the variety of informal forms of men-
tioning software. Improved standards should tackle the func-
tions of identification and findability (including at the level
of specific versions) as well as giving credit in a manner that
motivates excellent software work. Yet, moving beyond
those basic functions requires change not in how articles are

written, but in how software is made available, changes that
have to occur outside the process of writing articles, at the
projects that build software.

In this section, we move code by code, considering the
causes of the issues, potential solutions, techniques to
encourage uptake of the solutions, and describing “green
shoots” indicating progress in these areas.

Improving identification and findability. The most basic
function of mentioning software in an article is to allow
readers, including reviewers, to identify and locate the soft-
ware used. This function is directly analogous to the ability
to identify and find a specific publication, or the ability to
identify and find a specific material or instrument. In the
case of software, which, unlike a typical publication, con-
tinues to change after its initial release, this also involves
specific version numbers. Whereas we do not have specific
data on authors’ intentions, the fact that they mentioned the
software at all indicates that the problem in this area appears
not to be motivation, but a lack of clear standards and norms
for mentioning software. The way forward, then, seems
fairly straightforward: First, we need clear and consistent
practices for citing software, and second, we need to dis-
seminate, encourage, and enforce their use.

We are, of course, not the first to make this point. Indeed,
many citation style guides offer forms for citing software,
including the American Psychological Association (APA).
Recent efforts in this space include work analogous to data
citation, such as that undertaken by DataOne (Mayernik,
2012) and the ESIP organization (Earth Sciences
Information Partner, 2012). For software, a promising way

identifiable findable versioned version_findable credited

0.00

0.25

0.50

0.75

1.00

Cite to publication

Like
 instrument

Inform
al

Cite to publication

Like
 instrument

Inform
al

Cite to publication

Like
 instru

ment

Inform
al

Cite to publication

Like
 instru

ment

Inform
al

Cite to publication

Like
 instrument

Inform
al

P
ro

po
rt

io
n

FIG. 10. Functions of citation by mention category.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 13
DOI: 10.1002/asi



to incorporate version information is to link directly to the
source code repositories that development teams use to
track their development, as well as automating the creation
of a DOI or other Handles. Systems with this approach
have been developed at CERN (Purcell, 2014) and by
the Mozilla Science Project, Github, and Figshare
(http://mozillascience.github.io/code-research-object/).

The way forward here clearly involves journals and
conferences adopting specific forms of citation and enforc-
ing them as a condition of publication. We examined the
“instructions to authors” for the journals in our sample,
and found that only 24% had specific policies on citing
software. Unsurprisingly, journals in higher stratas seemed
more likely to have such policies (three of five journals in
the first strata (60%), 10 of 23 in the second strata (43%),
and 1 of 30 in the third strata (3%), with strata 3 showing
statistically significant differences from strata 1 and strata
2 (p = .005). It may be that with clearer standards that
are more broadly expected by authors, reviewers, editors,
and readers that journals’ provision of relevant policies
will improve. On the other hand, it may be appropriate to
build systems that automatically check the form of soft-
ware citations, ensuring that they follow the required styles
and that they correctly resolve to a specific version in a
repository.

Improving crediting. Authors appear committed to pro-
viding information about the origins of software. As
discussed, for authors seeking to make scientific contribu-
tions, credit is vital; it may be less so for those selling their
software. Yet, some forms of mentions offer more potential
than others; as we saw, the absence of crediting informa-
tion is driven almost entirely by the incidence of informal
mentions. Ironically, the Like instrument citation form
preferentially used with commercial software (see
Figure 7) (and thus less likely to be driven by a need for
credit) is relatively effective in ascribing credit, at least to
the level of the company selling the software.

Similarly, the Cite to publication form definitely
encourages the inclusion of crediting information; yet the
reuse of publication style citations may undermine the
usefulness of these mentions or actually produce undesir-
able results. At first, cites to publications would seem to
most directly enable contributors to demonstrate their sci-
entific impact, reusing existing bibliographic analysis
systems. Yet, using citations to articles can run counter to
the need to identify and find the software itself, particu-
larly because the publication citations remain static while
software changes, including changing name. Further,
however, these citations can “fix” the contributor list at a
particular time, creating a disincentive for later potential
participants to contribute their changes to a project and
contributing to the tendency for scientific software to
“fork” (Howison & Herbsleb, 2013). Finally, because
software is typically constructed by integrating code of
others, it is not clear that simply citing the authors of the
package used actually credits those who have provided the

functionality; indeed, a desire to be recognized might
encourage authors of software to avoid having their code
integrated.

Thus, there is a need for a form of crediting that iden-
tifies and rewards contributors in a manner most useful to
them and least likely to undermine desirable collaboration
and integration. The proposals discussed, linking to soft-
ware repositories, offer advantages in this area, potentially
facilitating tracing contribution to specific versions by
post-hoc examination of commits and their authorship in
the source code repository. Katz (2014) addresses the ques-
tion of integration by suggesting a system of indirect
credit, dividing citation credit accruing to top-level
projects between their developers and the developers
of the components they draw on. Other approaches take an
altmetrics approach and focus not on the appearance of
code in publications, but on metrics such as downloads or
use, including analysis of traces, such as downloads and
analysis of workflow repositories (e.g., McConahy,
Eisenbraun, Howison, Herbsleb, & Sliz, 2012; McLennan
& Kennell, 2010; Piwowar & Priem, 2013; Stodden et al.,
2012).

One approach achievable in the short term is for projects
themselves to specify the manner in which they would like
to be mentioned; with journals or styles providing “fall-
back” guidelines to be used when the software does not.
Some of the projects in our sample indeed did this, provid-
ing “preferred citations,” which were themselves a mix of
citations to domain and software articles and forms with
corporate authorships (e.g., “The R project Team”). Most of
these requests were contained on the home page of the
project or, in a few cases, in a “splash screen” or other part
of the software interface. We recorded whether a project
made such a request and coded, at the article level, whether
authors appeared to follow the request. We found that only
27 of our 146 software packages (18%; 95% CI: 0.13–0.30)
made a specific request to be mentioned in some way. These
packages were mentioned in 15 articles, resulting in 31
combinations of these packages and articles. We found 21
cases where the requested citation was used (68%, across 11
articles; 95% CI: 0.49–0.83), leaving 10 cases where the
request was not followed (32%, occurring across eight
articles; 95% CI: 0.17–0.51). We can only speculate, but this
may be a combination of not being aware of the request,
publishers’ style guides, or simple inattention on the
author’s behalf. Certainly, the paucity of specific requests
for citation, combined with their inconsistent usage, sug-
gests that measuring the research impact of software solely
by searching for specific citations has serious validity
concerns.

One possibility to improve the situation is for authors to
make correct acknowledgment a requirement of permission
to use the software; all but one of the examples we
observed were phrased as requests and not as require-
ments. In our interviews and discussions with producers of
scientific software (Howison & Herbsleb, 2011, 2013),
authors hesitate to make such requirements, both in fear of

14 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



losing users and in the belief that such requirements
violate principles of scientific sharing. There is precedent
for using licenses (and thus contract law) to require spe-
cific acknowledgments within the domain of open source
software and open cultural production, although such
requirements are controversial. The GNU GPL and the
Apache license requires software users to retain all attri-
bution notices in the code, and the original Berkeley Soft-
ware Distribution (BSD) license required acknowledgment
of the University of California; the Open Source Initiative
approves licenses requiring attribution, such as the
“Common Public Attribution License” used for the code
behind Reddit (Wilson, 2008). All Creative Commons
licenses require attribution (other than the Public Domain
Dedication, CC0) as a condition of use, and the project
provides guidelines on appropriate forms of attribution,
including tools to automate attributions (see Creative
Commons, 2014). Nonetheless, as with any system, end
users may not follow the license; indeed, in our data set,
one package used a license that required users to cite a
specific article, but the mention of that software in our data
set did not.

Finally, it seems likely that any standards should
address the question of whether to handle commercial soft-
ware differently from software written for academic credit.
The prevalence of Instrument like citations suggests that
authors see software as similar to other equipment; this
may be appropriate, especially if those writing the software
are merely interested in selling software and not in earning
academic reputation. However, a standard that differenti-
ated in this way would need to help authors know when to
use which form, and our suggestion of packages them-
selves providing this information seems pertinent.

Improving accessibility. We found that 21% of software
packages in our sample simply could not be accessed; at
95% CI, this suggests that between 16% and 28% of soft-
ware mentioned in publications is unavailable. One
approach for improving the availability of software asso-
ciated with an article is to require that it be deposited with
the publication itself. This approach often combines a
requirement for depositing data and analysis code, some-
times in the form of “workflows” (e.g., Goble et al., 2013;
Roure et al., 2009; Stodden et al., 2012) or perhaps “virtual
machines” replicating the entire analysis execution envi-
ronment. An extension of this approach is the “executable
article” (Strijkers et al., 2011), which calls for bundling all
the data and software needed to produce the results and the
article, right through to plots and, ultimately, the article
PDF. These are promising approaches, which avoid the
reproducibility issue from incomplete software and work-
flow descriptions demonstrated by failed attempts at repli-
cation by Ince et al. (2012), and they have been quite
successful in some fields; an increasing number of journals
and conferences have these requirements. Yet, as with
citation standards, such repositories have compliance,

monitoring, and maintenance issues, as described in
Econometrics by McCullough, McGeary, and Harrison
(2006). The Journal of Money, Banking, and Finance has
had a data and software repository for many years; yet, an
attempt to use the contents of the repository for replication
showed that only 69 of the 193 articles that should have
had entries actually did, and the authors were only able to
use code to successfully replicate the analysis in 14 cases.
Clearly, a policy is only as good as its enforcement.

In fact, much of the question of accessibility depends
not on the actions of authors of articles that use the soft-
ware, but on the behavior of a much larger group, includ-
ing software component producers and intermediaries,
such as software publishers and repositories. This is par-
ticularly true when one seeks to access source code and
integrate or modify it. Accordingly, a series of workshops
and publications have argued that nothing less than soft-
ware that is developed and made available as fully open
source software is sufficient for the aims of science policy
(Ince et al., 2012; Katz et al., 2014). This means choosing
and using a specific open source software license and com-
mitting to continually making software available through
public repositories. Just as in data advocates for openness
have reasoned “public money, public data,” so, too, comes
advocacy for “public money, public code.” The arguments
for openness, however, need to interact with requirements
for software sustainability over time. In some cases, open-
ness and sustainability are well aligned, as with well-
executed open source projects. If, however, the project
chooses to pursue sustainability through commercial sales,
then the situation is more complex. For example, some
code of great usefulness to scientists is supported by sales
to the commercial market, in effect cross-subsidizing sci-
entific use and making greater resources available to
science. Blanket policies, such as “public money, public
code,” preclude models like this. Nonetheless, hybrid
models are possible, such as is common with MATLAB
code: a for-profit, closed source engine, but a great deal of
open sharing of analysis code.

Conclusion and Future Research

We have examined the manner in which software is
mentioned in scientific articles, and we conclude that the
practices are varied and appear relatively ad hoc. It is not
too surprising, then, that we also find that the way that
software is mentioned, and the way that it is made acces-
sible to users of the scientific literature, fails to accomplish
many of the intended functions of citations in scholarly
communication. Certainly, it is clear that studies of soft-
ware in publications, or efforts to assess the impact of soft-
ware through bibliometrics, must look beyond formal
citations or reference lists given that the data in this article
provide evidence that these, at least in the biology litera-
ture, constitute only between 31% and 43% of software
mentions.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 15
DOI: 10.1002/asi



There are a great number of interesting research ques-
tions that ought to be pursued. Certainly, efforts are needed
in the design and testing of improved software citation
approaches and standards. These efforts need to assess
potential influence on collaboration. For example, how does
the reuse of the publication system through “software
articles” as requested citations influence the willingness of
future developers to cooperate? How might a software cita-
tion system acknowledge the many contributors to software
dependencies on which user-facing components are built
(providing indirect credit)? Can scholarly articles bear the
sheer amount of citations that such a system would call for?
Further, we know little about how scientists reason about
what ought to be cited and how they make these decisions; in
particular, we know almost nothing about when scientists
choose not to mention software they have used at all and we
know little about how to influence scientists toward new
practices.

Software is both similar and different to other elements
mentioned in scientific papers: It is at once an artifact,
an instrument, a protocol, sometimes a publication, and
the focus of ongoing activity. In short, software is both
an artifact and a practice. This varied nature renders
the question of how software ought to be mentioned in
publications surprisingly complex. Yet, it also provides
an opportunity: Addressing the issues reported in this
article would go a great distance to improving the efficacy
of both scholarly communications and scientific
practice.

Acknowledgments

The full data set and analysis code for this article is
available online at https://github.com/jameshowison/
softcite/. This version was commit 1c37d938f1349cdd
72ab7586ceb398e1e8372ab7 or tag vR2.1.

The graphs in this article were created using ggplot2
software (Wickham, 2009), version 1.0.0, running in the R
statistics environment (R Development Core Team, 2009),
version 3.1.1. Data storage and manipulation was done
with the Apache Jena software (version 2.11.1) (https://
jena.apache.org/, written by the Apache Jena team,
https://jena.apache.org/about_jena/team.html) and the spin
framework (version 1.4.0) (http://spinrdf.org/spin.html,
written by Holger Knublauch), supported by the Hamcrest
Library (version 1.3) and JUnit (version 4.11) (credit infor-
mation for both at https://github.com/junit-team/junit/blob/
master/acknowledgements.txt). Jena and R were linked
using the rrdf library (Willighagen, 2013), version 2.0.2.
Additional data manipulation used the dplyr (version
0.2.0.99) and reshape2 (version 1.4) R libraries, both
written by Hadley Wickham.

We would like to thank Catherine Grady for her assis-
tance with content analysis.

This material is based upon work supported by the NSF
under Grant No. SMA-1064209.

References

Altman, M., & King, G. (2007). A proposed standard for the scholarly
citation of quantitative data. D-Lib Magazine, 13(3/4).

Borgman, C.L., Wallis, J.C., & Mayernik, M.S. (2012). Who’s got the data?
Interdependencies in science and technology collaborations. Computer
Supported Cooperative Work (CSCW), 21(6), 485–523.

Bradford, S.C. (1934). Sources of information on specific subjects. Engi-
neering, 137, 85–86.

Brookes, B.C. (1985). “Sources of information on specific subjects” by S.C.
Bradford. Journal of Information Science, 10(4), 173–175.

Byrt, T., Bishop, J., & Carlin, J.B. (1993). Bias, prevalence and kappa.
Journal of Clinical Epidemiology, 46(5), 423–429.

Cano, V. (1989). Citation behavior: Classification, utility, and location.
Journal of the American Society for Information Science, 40(4), 284–
290.

CODATA. (2013). Out of cite, out of mind: The current state of practice,
policy, and technology for the citation of data. Data Science Journal,
12(September), CIDCR1–CIDCR75.

Creative Commons. (2014). Best practices for attribution—CC Wiki.
Retrieved from https://wiki.creativecommons.org/Best_practices_for
_attribution

Earth Sciences Information Partner. (2012). Data citation guidelines for
data providers and archives. ESIP Working Document. doi: 10.7269/
P34F1NNJ

Edwards, P.N., Jackson, S.J., Chalmers, M.K., Bowker, G.C., Borgman,
C.L., Ribes, D., . . . Calvert, S. (2013). Knowledge infrastructures:
Intellectual frameworks and research challenges. doi: 2027.42/97552

Gambardella, A., & Hall, B.H. (2006). Proprietary versus public domain
licensing of software and research products. Research Policy, 35(6),
875–892.

Gamer, M., Lemon, J., Singh, P., & Fellows, I. (2012). irr: Various coeffi-
cients of interrater reliability and agreement. Retrieved from http://
CRAN.R-project.org/package=irr

Goble, C., Roure, D.D., & Bechhofer, S. (2013). Accelerating scientists’
knowledge turns. In A. Fred, J.L.G. Dietz, K. Liu, & J. Filipe (Eds.),
Knowledge discovery, knowledge engineering and knowledge manage-
ment (pp. 3–25). New York, NY, USA: Springer Berlin Heidelberg.
doi:10.1007/978-3-642-37186-8_1

Goh, D., & Ng, P. (2007). Link decay in leading information science
journals. Journal of the American Society for Information Science and
Technology, 58(2002), 15–24.

Hope, A.C. (1968). A simplified Monte Carlo significance test procedure.
Journal of the Royal Statistical Society: Series B (Methodological),
30(3), 582–598.

Howison, J., & Herbsleb, J.D. (2011). Scientific software production:
Incentives and collaboration. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (pp. 513–522). Hangzhou, China
March 19–23. doi: 10.1145/1958824.1958904

Howison, J., & Herbsleb, J.D. (2013). Incentives and integration in scien-
tific software production. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (pp. 459–470). San Antonio,
TX: February 23–27. doi: 10.1145/2441776.2441828

Ince, D.C., Hatton, L., & Graham-Cumming, J. (2012). The case for open
computer programs. Nature, 482(7386), 485–488.

Katz, D.S. (2014). Transitive credit as a means to address social and
technological concerns stemming from citation and attribution of digital
products. Journal of Open Research Software, 2(1), e20.

Katz, D.S., Choi, S.-C.T., Lapp, H., Maheshwari, K., Löffler, F., Turk, M.,
. . . Venters, C. (2014). Summary of the first workshop on sustainable
software for science: Practice and experiences (WSSSPE1). Journal of
Open Research Software, 2(1).

King, G. (1995). Replication, replication. Political Science and Politics, 28,
444–452.

Klein, M., Van de Sompel, H., Sanderson, R., Shankar, H., Balakireva, L.,
Zhou, K., & Tobin, R. (2014). Scholarly context not found: One
in five articles suffers from reference rot. PLoS ONE, 9(12),
e115253.

16 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



Koehler, W. (1999). An analysis of web page and web site constancy and
permanence. Journal of the American Society for Information Science,
50(2), 162–180.

Konkiel, S. (2013). Tracking citations and altmetrics for research data:
Challenges and opportunities. Bulletin of the American Society for
Information Science and Technology, 39(6), 27–32.

Lawrence, S. (2001). Free online availability substantially increases a
paper’s impact Nature, 411(6837), 521–521. doi: 10.1038/35079151

Lipetz, B. (1965). Improvement of the selectivity of citation indexes to
science literature through inclusion of citation relationship indicators.
American Documentation, 16(2), 81–90.

Mayernik, M.S. (2012). Data citation initiatives and issues. Bulletin of
the American Society for Information Science and Technology, 38(5),
23–28.

McConahy, A., Eisenbraun, B., Howison, J., Herbsleb, J.D., & Sliz, P.
(2012). Techniques for monitoring runtime architectures of socio-
technical ecosystems. In Workshop on Data-Intensive Collaboration in
Science and Engineering (CSCW 2012), February 11–12, Seattle, WA.

McCullough, B.D., McGeary, K.A., & Harrison, T.D. (2006). Lessons from
the JMCB archive. Journal of Money, Credit, and Banking, 38(4), 1093–
1107.

McLennan, M., & Kennell, R. (2010). HUBzero: A platform for dissemi-
nation and collaboration in computational science and engineering.
Computing in Science and Engineering, 12(2), 48–53.

Mooney, H., & Newton, M. (2012). The anatomy of a data citation: Dis-
covery, reuse, and credit. Journal of Librarianship and Scholarly Com-
munication, 1(1), 1–6.

Moravcsik, M.J., & Murugesan, P. (1975). Some results on the function and
quality of citations. Social Studies of Science, 5(1), 86–92. doi: 10.2307/
284557

Newcombe, R.G. (1998). Interval estimation for the difference between
independent proportions: Comparison of eleven methods. Statistics in
Medicine, 17(8), 873–890.

Pham, S., & Hoffmann, A. (2003). A new approach for scientific citation
classification using cue phrases. AI 2003: Advances in Artificial Intelli-
gence. doi: 10.1007/978-3-540-24581-0_65

Piwowar, H., & Priem, J. (2013). The power of altmetrics on a CV. Bulletin
of the American Society for Information Science and Technology, 39(4),
10–13.

Purcell, A. (2014, March 5). Tool developed at CERN makes software
citation easier. International science grid this week. Retrieved from
http://www.isgtw.org/spotlight/tool-developed-cern-makes-software-
citation-easier

R Development Core Team. (2009). R: A language and environment for
statistical computing. Vienna: R Foundation for Statistical Computing.

Roure, D.D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J.,
Cruickshank, D., . . . Poschen, M. (2009). Towards open science: The
myExperiment approach. Concurrency and computation: Practice and
experience, 22(17), 2335–2353.

Science Watch. (2003). Twenty years of citation superstars. Science Watch,
14(5).

Sellitto, C. (2005). The impact of impermanent web-located citations: A
study of 123 scholarly conference publications. Journal of the
American Society for Information Science and Technology, 56(7), 695–
703.

Simons, N., Visser, K., & Searle, S. (2013). Growing institutional support
for data citation: Results of a partnership between Griffith University
and the Australian National Data Service. D-Lib Magazine, 19(11/12).

Stewart, C.A., Almes, G.T., & Wheeler, B.C. (2010). NSF cyberinfrastruc-
ture software sustainability and reusability workshop report. doi: 2022/
6701

Stodden, V., Donoho, D., Fomel, S., Friedlander, M., Gerstein, M.,
LeVeque, R., . . . Wiggins, C. (2010). Reproducible research. Computing
in Science and Engineering, 12(5), 8–13.

Stodden, V., Hurlin, C., & Perignon, C. (2012). RunMyCode.org: A novel
dissemination and collaboration platform for executing published com-
putational results. In 2012 IEEE 8th International Conference on
E-Science (e-Science) (pp. 1–8). doi: 10.1109/eScience.2012.6404455

Stodden, V., Guo, P., & Ma, Z. (2013). Toward reproducible computational
research: An empirical analysis of data and code policy adoption by
journals. PLoS ONE, 8(6), e67111.

Strijkers, R., Cushing, R., Vasyunin, D., de Laat, C., Belloum, A.S.Z., &
Meijer, R. (2011). Toward executable scientific publications. Procedia
Computer Science, 4, 707–715.

Teufel, S., Siddharthan, A., & Tidhar, D. (2006). Automatic classification
of citation function. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing (pp. 103–110). Sydney, Aus-
tralia, July 22–23. doi: 10.3115/1610075.1610091

Van der Loo, M.P.J. (2014). The stringdist package for approximate string
matching. The R Journal, 6(1), 111–122.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New
York, NY, USA: Springer.

Willighagen, E. (2013). Accessing biological data with semantic web tech-
nologies. Peer J Pre-Prints. doi: 10.7287/peerj.preprints.185v1

Wilson, R. (2008). Common public attribution license—An overview.
Retrieved from http://oss-watch.ac.uk/resources/cpal

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 17
DOI: 10.1002/asi



Appendix A: Details of Sampling Frame and Journals in Sample

The sampling frame included all journals in the 2010 edition of the ISI WoS, using the Journal Citation Reports tool. We
included these categories:

TABLE 7. All categories in sample.

Biochemistry & Molecular Biology Biology
Biotechnology & Applied Microbiology Cell Biology
Developmental Biology Entomology
Evolutionary Biology Genetics & Heredity
Marine & Freshwater Biology Mathematical & Computational Biology
Microbiology Multidisciplinary Sciences
Mycology Ornithology
Parasitology Plant Sciences
Reproductive Biology Zoology

TABLE 8. All journals in sample.

1–10 11–110 111–1,455

Nature Genetics Nucleic Acids Research Applied Biochemistry and Biotechnology
Science Nature Cell Biology BMC Plant Biology
Nature Biotechnology Molecular Systems Biology Academie des Sciences. Comptes Rendus. Biologies
Cell Molecular Ecology American Journal of Botany
Nature The FASEB Journal Israel Journal of Plant Sciences

Genome Research Advances in Complex Systems
Molecular Therapy Biochimica et Biophysica Acta. Proteins and Proteomics
Nature Structural and Molecular Biology Journal of Molecular Neuroscience
Developmental Cell BMC Molecular Biology
Cladistics Turkish Journal of Biochemistry
The Plant Journal Phytomedicine
Systematic Biology Molecular Diagnosis and Therapy
Acta Crystallographica. Section D: Biological Crystallography Zoological Studies
Human Molecular Genetics Journal of Molecular Catalysis B: Enzymatic
Stem Cells Australian Journal of Entomology
Nanomedicine Journal of Computer—Aided Molecular Design
New Phytologist Waterbirds
Cell Research The Journal of Parasitology
PLoS Biology Acta Parasitologica
National Academy of Sciences. Proceedings Biochimica et Biophysica Acta. General Subjects
The Journal of Infectious Diseases Journal of Thermal Biology
The Journal of Cell Biology Protoplasma
Molecular Psychiatry Aquatic Ecosystem Health & Management

Turkish Journal of Zoology
Arthropod Structure & Development
Cytotechnology
Undersea & Hyperbaric Medicine
Systematic Botany
Nucleosides, Nucleotides and Nucleic Acids
Journal of Integrative Plant Biology

18 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi



Appendix B: Software Packages Mentioned in Articles

TABLE 9. Software packages mentioned in sample.

CCP4 4
ClustalW 4
Excel 4
PAUP 4
Adobe Photoshop 3
BLAST 3
HKL 3
ImageJ 3
MetaMorph 3
NIH Image 3
O 3
SPSS 3
CNS 2
ModelTest 2
R 2
REFMAC 2
SAS 2
SOLVE 2
Stereo Investigator 2
Treeview 2
Adobe INDesign CS 1
Agilent 2100 Expert Software 1
AMoRe 1
AMOVA 1
Autodecay 1
BeadStudio 1
BIAevaluation 1
BioDataFit 1
BioEdit 1
BioNJ 1
BIOSYS 1
BLAT 1
BOXSHADE 1
cactus online smiles translator 1
CAD 1
Calcusyn 1
CALPHA 1
Chart 5 1
CHIMERA 1
ChipViewer 1
Cluster 1
COLLAPSE 1
COOT 1
DatLab 1
DENZO 1
DYMEX® 1
EIGENSTRAT 1
Ensembl 1
EnzFitter 1
EPMR 1
ESCET 1
GAP 1
GDE 1
Gelworks 1D Advanced 1
GenePix 1
GENESPRING 1
Genome Analyser II 1
geNorm 1
GoMiner 1
Grafit 1
Graph Pad Prizm 1
GraphPad Prism 1
GRASP 1
GRID 1
GRIN 1
IDEG6 1
Jalview 1
JAZZ 1
JMP(R) 1
jMRUI 1
Kodak Digital Science 1D 1
KS300 1
limma R package 1

LSM510 1
LSQKAB 1
MacClade 1
MapMaker 1
MapQTL 1
MATLAB 1
Mfold 1
Minitab 1
MitoProt 1
MOLREP 1
MOLSCRIPT 1
MorphoCode 1
MrBayes 1
NeuroZoom 1
NormFinder 1
NTSYS-pc 1
Opticon Monitor 2 1
OPUS 1
PC-ORD 1
PHASE 1
PHASER 1
Phred/Phrap/Consed 1
PHYLIP 1
PHYML 1
PONDR 1
POST 1
PREDATOR 1
Prism 1
PROCHECK 1
PSORT 1
qBasePlus 1
QUANTA 1
Quantity One 1
RACE 1
RASTER3D 1
RESOLVE 1
RIBBONS 1
SCALEPACK 1
SCAMP 1
Sedfit 1
Sednterp 1
Sequence Navigator 1
SHELLSCALE 1
SHP 1
SIGMAA 1
Sigmaplot 1
Software for Zeiss LSM 510 1
software-Unknown-a2003-22-CR_BIOL-C01-mention 1
software-Unknown-a2003-44-SCIENCE-C09-mention 1
software-Unknown-a2003-44-SCIENCE-C10-mention 1
software-Unknown-a2006-05-SYST_BIOL-C05-mention 1
software-Unknown-a2006-05-SYST_BIOL-C08-mention 1
software-Unknown-a2006-47-SYST_BIOL-C02-mention 1
software-Unknown-a2007-11-GENOME_RES-C09-mention 1
software-Unknown-a2008-06-NAT_GENET-C04-mention 1
Staden 1
STATA 1
Statistica 1
Statview 1
Swiss-Model 1
SYSTAT 1
TargetP 1
TIMAT2 1
TMHMM 1
TRIM_DENZO 1
tRNAScan-SE 1
TRUNCATE 1
Useq 1
WinNONLIN 1
X-PLOR 1
X-Score 1
XPREP 1
Zeiss LSM Image Browser 1

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 19
DOI: 10.1002/asi


