
! 1!

James&Howison’s&contribution&for&Infrastructures&Workshop&Seattle&6;8&

This!is!a!putative!introduction!chapter!and!book!outline!for!a!book!proposal!
to!Paul!Edwards’!Infrastructure!series.!Much!of!the!material!comes!from!the!
working!paper!that!follows.!I!would!appreciate!all!comments!and!questions,!but!
most!appreciate!input!about!a)!tone!for!a!book,!b)!moving!this!to!a!compelling!book!
proposal!(which!I’ve!never!done!before)!and!c)!moving!material!from!the!working!
paper!into!the!book!structure.!The!working!paper!is!long,!so!if!pushed!for!time!I!
recommend!reading!part!1!(which!is!basically!empirical,!pages!4E9)!and!the!
discussion!around!Figure!3!on!ecosystem!architectures!(on!page!17).!

Science&and&Software:&an&introduction&

Science!depends!on!software.!!From!configuration!and!control!of!
instruments,!to!statistical!analysis,!simulation!and!visualization,!virtually!every!
workflow!that!generates!scientific!results!involves!software.!!Recent!research!
suggests!that!scientists!may!be!spending!up!to!30%!of!their!time!developing!
software!and!40%!of!their!time!using!software.1!Indeed,!in!many!fields!there!is!no!
scientific!data!without!simulation!models!realized!in!software.2!

Visions!of!the!future!of!science,!such!as!the!Atkin’s!Report!and!the!NSFs!
CIF21!vision3,!frame!software!as!much!more!than!a!supporting!service:!it!can!be!a!
source!of!innovation!and!can!enhance!science!by!increasing!its!transparency,!
reproducibility,!correctness,!transferability!and!scale.4!In!particular!the!vision!holds!
that!the!properties!of!software!as!a!digital!artifact,!its!low!marginal!cost!of!
reproduction!and!high!potential!for!reEuse!and!recombination,!offers!the!potential!
for!relatively!small!initial!investments!that!can!lead!to!increasing!reEuse!and!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!J.E.!Hannay!et!al.,!“How!Do!Scientists!Develop!and!Use!Scientific!Software?,”!

in!Proceedings+of+the+2009+ICSE+Workshop+on+Software+Engineering+for+
Computational+Science+and+Engineering,!2009,!E8.!

2!Paul!N!Edwards,!A+Vast+Machine+Computer+Models,+Climate+Data,+and+the+
Politics+of+Global+Warming!(Cambridge,!Mass.:!MIT!Press,!2010),!
http://site.ebrary.com/id/10424687.!

3!Daniel!Atkins,!“Report!of!the!National!Science!Foundation!BlueERibbon!
Advisory!Panel!on!Cyberinfrastructure,”!2003,!
http://www.nsf.gov/od/oci/reports/toc.jsp;!NSF,!“A!Vision!and!Strategy!for!
Software!for!Science,!Engineering,!and!Education:!Cyberinfrastructure!Framework!
for!the!21st!Century!(CIF21),”!Dear!Colleague!Letter!(The!US!National!Science!
Foundation,!2012),!http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.htm.!

4!Victoria!Stodden!et!al.,!“Reproducible!Research,”!Computing+in+Science+and+
Engineering,!2010;!Darrel!C.!Ince,!Leslie!Hatton,!and!John!GrahamECumming,!“The!
Case!for!Open!Computer!Programs,”!Nature!482,!no.!7386!(February!22,!2012):!
485–88,!doi:10.1038/nature10836.!
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coalescence!into!widely!used!software!platforms,!resulting!in!widespread,!longE
lived,!impact!in!the!form!of!better!science.!

Yet,!as!in!other!areas!of!human!endeavor,!software!can!also!become!a!
problem,!consuming!time!and!resources!from!science,!with!duplicated!work,!poor!
quality!results!and!weak!reproducibility.5!!Indeed!questions!about!the!quality!of!
software,!and!software!work,!in!science!were!at!the!heart!of!recent!debates!about!
the!reliability!of!scientific!results!for!public!policy!precipitated!by!the!soEcalled!
“Climategate”!incident.6!The!potential!contribution!of!software!in!science!is!thus!
undermined,!resulting!in!practices!that!obscure!rather!than!reveal!the!underlying!
science!and!expensive,!frustrating,!churn!as!packages!are!written!and!discarded.!

How!then!do!we!come!to!have!the!software!we!build!and!use!in!science?!How!
might!we!have!software,!and!software!work,!with!different!characteristics?!This!
book!takes!a!systematic!view!of!the!production!and!use!of!software!written!
specifically!for!scientists.!We!seek!understanding!that!helps!us!speak!about!how!the!
overall!practices!might!be!improved,!towards!better!science.!

The&themes&of&this&book&

Governance)of)emergent)infrastructures)

Understanding!the!dynamics!of!a!topic!like!scientific!software!is!difficult,!but!
of!increasing!importance.!Even!speaking!of!some!collective!scientific!software!
phenomenon!is!to!employ!a!concept!firmly!at!an!uncomfortable!level!of!analysis:!to!
grasp!the!phenomenon!sufficiently!to!have!any!chance!of!influencing!it!we!need!to!
grapple!with!activity!that!is!both!inside!and!outside!organizations!and!inside!and!
outside!particular!knowledge!cultures.7!Scientific!software!is!an!emergent!
phenomenon,!without!overarching!institutions!of!governance!or!even!the!collective!
acknowledgment!of!being!an!interdependent!system!that!undergirds!legitimate!
efforts!at!governance.!In!this!way!the!scientific!software!ecosystem!is!akin!to!an!
industry!or!a!subEculture!far!more!than!it!is!akin!to!the!potentially!manageable!IT!
function!of!an!organization!or!a!government.!Even!in!the!loosely!governed!domain!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!Ince,!Hatton,!and!GrahamECumming,!“The!Case!for!Open!Computer!

Programs”;!Paul!F.!Dubois,!“Maintaining!Correctness!in!Scientific!Programs,”!
Computing+in+Science+and+Engg.!7,!no.!3!(2005):!IEEE!Educational!Activities!
Department!–!85;!Alfonso!Gambardella!and!Bronwyn!H.!Hall,!“Proprietary!versus!
Public!Domain!Licensing!of!Software!and!Research!Products,”!Research+Policy!35,!no.!
6!(2006):!E892,!doi:doi:!DOI:!10.1016/j.respol.2006.04.004;!B.!D.!McCullough,!Kerry!
Anne!McGeary,!and!Teresa!D.!Harrison,!“Lessons!from!the!JMCB!Archive,”!Journal+of+
Money,+Credit,+and+Banking!38,!no.!4!(2006):!1093–1107.!

6!Dave!S!Reay,!“Lessons!from!Climategate,”!Nature!467,!no.!7312!(2010):!
157–157;!Marianne!Ryghaug!and!Tomas!Moe!Skjølsvold,!“The!Global!Warming!of!
Climate!Science:!Climategate!and!the!Construction!of!Scientific!Facts,”!International+
Studies+in+the+Philosophy+of+Science!24,!no.!3!(2010):!287–307.!

7!Karin!KnorrECetina,!Epistemic+Communities!(Cambridge,!MA:!Harvard!
Education!Press,!1999).!
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of!science,!we!will!see!that!software!work!sits!uncomfortably,!in!the!sense!that!
scientists,!and!the!institutions!of!science!(journals,!professional!societies,!funding!
agencies,!universities,!national!science!policy!organizations),!are!unsure!the!extent!
to!which!software,!and!work!on!software,!fall!under!the!activities!about!which!
Science!holds!legitimate!power.!Software!and!software!work!fall!into!the!
background;!they!are!not!the!activity!of!primary!activity!(not!research!or!even!
method),!but!a!secondary!activity,!an!infrastructural!activity!(at!best).!Certainly!
scientists!and!scientific!institutions!are!unsure!how!and!when!to!wield!any!influence!
they!might!have.!

In!that!sense!this!book!is!about!the!governability!of!emergent!infrastructures,!
seeking!insight!into!whether!and!how!unruly,!separate,!secondary,!activity!might!
come!to!be!understood!as!a!system.!More,!though,!the!ambition!to!usefully!influence!
the!system!raises!questions!of!whether!and!how!participants!(people,!institutions,!
even!technologies)!might!grasp!that!systemness!and!decide!how!to!attempt!to!
govern,!or!at!least!influence,!it.!

Reproducibility)and)Sustainability)

There!are!two!core!concepts!around!which!discussions!about!software!in!
science!have!come!to!turn:!reproducibility!and!sustainability.!Each!comes!from!a!
different!direction!and!emphasizes!the!concerns!of!different!stakeholders,!but!in!the!
end!share!a!set!of!concerns.!

The!discourse!on!reproducibility!is!driven!from!the!bottom!up!by!those!
interested!in!how!science!at!the!coalface!is!done,!in!reading!and!learning!from!
scientific!publications,!and!in!building!on!the!work!of!other!scientists.!They!ask,!how!
do!we!know!what!was!actually!done,!how!can!we!check!and!confirm!its!correctness!
and!implications,!and!how!can!we!extend!the!work?!They!point!out!that!descriptions!
in!papers!are!almost!always!insufficient!for!replication!by!others.!Yet!the!software!
itself!is!often!not!available,!is!very!infrequently!subject!to!peer!review;!when!it!is!
available!it!is!poorly!documented!and!hard!to!use.!Thus!software!makes!science!less!
transparent!and!makes!the!job!of!other!scientists!more!difficult!than!it!needs!to!be.!!

On!the!other!hand,!those!focused!on!reproducibility!emphasize!that!software!
could!make!science!far!more!transparent,!providing!the!full!set!of!operations!
together!with!data!as!workflows,!ultimately!resulting!in!“executable!papers”!or!
endorsements!of!reproducibility!and!extensive!peer!review!in!journals.8!An!activist!
community!has!emerged,!drawing!on!Mertonian!ideals!of!scientific!openness,!to!
implore!scientists!to!change!their!ways.!They!dangle!the!carrot!of!collectively!better!
science,!while!wielding!the!stick!of!shame!(albeit!lightly)!by!accusing!others!of!
carelessly!violating!norms!of!science.!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8!Rudolf!Strijkers!et!al.,!“Toward!Executable!Scientific!Publications,”!Procedia+

Computer+Science,!Proceedings!of!the!International!Conference!on!Computational!
Science,!ICCS!2011,!4!(2011):!707–15,!doi:10.1016/j.procs.2011.04.074;!Ince,!
Hatton,!and!GrahamECumming,!“The!Case!for!Open!Computer!Programs”;!Stodden!et!
al.,!“Reproducible!Research.”!



! 4!

The!discourse!on!sustainability,!in!contrast,!is!driven!“topEdown,”!primarily!
by!science!funding!agencies.!Sustainability!here!refers!not!to!the!preservation!of!the!
natural!environment,!but!to!the!longEterm!future!of!software!built!for!scientists.!As!
one!workshop!participant!tweeted,!sustainability!is!about!“what!happens!when!the!
grant!runs!out.”9!Funders!perceive!substantial!sums!being!spent!on!software!for!the!
use!of!scientists!that!both!fails!to!achieve!widespread!use!and,!most!importantly,!
returns!time!and!again!for!ongoing!funding!devoted!to!maintenance!rather!than!new!
innovations.!The!logic!of!science!funding!is!primarily!oriented!to!discovery,!hoping!
to!fund!the!initial!burst!of!innovation!that!others!(usually!commercial!industry)!will!
pick!up!and!sustain.!Funding!agencies,!particularly!in!the!US,!struggle!with!the!idea!
of!truly!infrastructural!spending,!of!a!“long!now”10!of!continued!spending!on!
background,!secondary,!activity!most!vulnerable!to!accusations!of!waste!and!
duplication.!

The!discourses!of!reproducibility!and!sustainability!both!reflect!the!
perception!that!software!in!science!is!not!acting!as!it!should.!In!particular!it!does!not!
seem!to!follow!the!route!towards!reEuse,!coalescence,!and!interEoperability!seen!to!
occur!outside!science,!driving!the!creation!of!“software!platforms”!that!undergird!
collective!innovation.!Rather!the!perception!is!of!multiple!false!starts:!visions,!
enthusiasm,!and!potential!tapering!off,!leaving!creaky,!isolated,!opaque,!artifacts!in!
danger!of!being!abandoned,!or!maintained!only!through!hard,!costly,!but!ultimately!
deadEend,!effort11.!

In!this!book!I!hope!to!disentangle!what!is!driving!both!of!these!discourses,!
uniting!them!to!state!the!overall!challenges!and!outline!possibilities!for!
improvement.!I!also!hope!to!link!what!is!happening!in!science!with!what!is!
happening!in!the!broader!software!industry!and!beyond.!Beyond!these!largely!
applied!interests,!I!also!hope!to!connect!with!two!conceptual!themes!in!the!broader!
analysis!of!socioEtechnical!questions:!the!impact!of!digital!products!and!the!duality!
of!technology!as!artifact!and!practice.!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9!Daniel!S.!Katz!et!al.,!“Summary!of!the!First!Workshop!on!Sustainable!

Software!for!Science:!Practice!and!Experiences!(WSSSPE1),”!Journal+of+Open+
Research+Software!2,!no.!1!(July!9,!2014),!doi:10.5334/jors.an.!

10!Geoffrey!C.!Bowker!et!al.,!“The!Long!Now!of!Cyberinfrastructure,”!in!World+
Wide+Research:+Reshaping+the+Sciences+and+Humanities!(Cambridge,!MA:!MIT!Press,!
2010).!

11!Editorial!note:!((One!key!question!is!whether!this!perception!is!justified,!or!
whether!it!reflects!a!misunderstanding!of!the!extent!of!“failed”!effort!in!the!
evolution!of!software!outside!science.!!Why!does!science!think!it!can/ought!to!do!
this!better?!Is!it!a!combination!of!“our!culture!is!one!of!openness!and!sharing,!we!
should!be!better!than!the!inefficiencies!of!the!market”!meeting!the!“hey,!ultimately!
the!government!is!paying!for!much!of!this!(or!at!least!software!is!a!tax!on!‘real!
science’),!we!should!be!efficient!in!how!we!spend!this!money”.))!
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Two)possibilities)of)digital)products:)re;use)and)recombination)

When!something!is!digital!we!can!do!different!things!with!it.!Anyone!that!
lived!through!Napster!(or!Youtube)!instantly!knows!the!far!from!unproblematic!
possibilities:!digital!products!make!it!possible!to!reproduce!copies!at!close!to!zero!
marginal!costs,!opening!up!the!possibility!that!once!something!is!produced!it!can!be!
available!for!everyone,!everywhere,!to!use!or!enjoy.!!

A!second!possibility!builds!on!reuse:!digital!things!can!be!reEcombined.!
Rather!than!simply!reusing!exact!copies!of!the!original,!recombination!facilitates!
extension!and!innovation12.!Again!music!shows!the!way:!from!sampling!to!mashE
ups,!music!can!be!pulled!part,!broken!down,!and!the!parts!recombined!by!others!to!
make!something!new.!The!ability!to!break!up!systems!and!recombine!their!
components!gives!rise!to!“option!value,”!epitomized!originally!by!IBM’s!decision!to!
allow!outsiders!to!improve!components!of!their!computer!system13!and!more!
recently!by!the!outcome!of!Apple’s!(eventual)!decision!to!allow!developers!direct!
access!to!a!software!platform!for!the!iPhone!and!the!resulting!cornucopia!of!Apps.!
The!original!developer!doesn’t!have!to!perceive!all!possibilities!of!value!in!advance,!
just!manage!processes!of!“coring”!and!“tipping”14!to!provide!a!sustained!platform!
for!others!to!bring!their!insights!and!resources!to!bear,!providing!an!“innovation!
engine”!for!others!to!drive.15!

Of!course!such!possibilities!are!far!from!unproblematic:!these!possibilities!
threaten!established!interests!and!resourcing!models.!We!have!witnessed!the!take!
down!of!peerEtoEpeer!fileEsharing!like!Napster!and!Pirate!Bay,!the!constant!toEandE
fro!of!DCMA!takedown!notices!on!services!like!Youtube!and!efforts!to!bolster!
property!rights!in!digital!content!in!trade!agreements!like!the!Trans!Pacific!
Partnership.!Battles!have!been!fought!over!encryption!used!for!“digital!rights!
management”!and!“trusted!computing.”!Sampling!has!moved!from!the!underground!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12!Youngjin!Yoo!et!al.,!“Organizing!for!Innovation!in!the!Digitized!World,”!

Organization+Science!23,!no.!5!(September!1,!2012):!1398–1408,!
doi:10.1287/orsc.1120.0771;!Sendil!K.!Ethiraj!and!Daniel!Levinthal,!“Modularity!
and!Innovation!in!Complex!Systems,”!Management+Science!50,!no.!2!(February!1,!
2004):!159–73;!Joseph!Alois!Schumpeter,!The+Theory+of+Economic+Development:+An+
Inquiry+Into+Profits,+Capital,+Credit,+Interest,+and+the+Business+Cycle!(Transaction!
Publishers,!1934);!U.!Zander!and!B.!Kogut,!“Knowledge!and!the!Speed!of!the!
Transfer!and!Imitation!of!Organizational!Capabilities:!An!Empirical!Test,”!
Organization+Science!6!(1995):!E92.!

13!Carliss!Y.!Baldwin!and!Kim!B.!Clark,!Design+Rules:+The+Power+of+Modularity!
(Cambridge,!MA:!Harvard!Business!School!Press,!2000).!

14!A.!Gawer!and!Michael!A.!Cusumano,!“How!Companies!Become!Platform!
Leaders,”!MIT+Sloan+Management+Review!49,!no.!28!(2008);!Kevin!Boudreau,!“Open!
Platform!Strategies!and!Innovation:!Granting!Access!vs.!Devolving!Control,”!
Management+Science!56,!no.!10!(2010):!1872.!

15!David!S.!Evans,!Andrei!Hagiu,!and!Richard!Schmalensee,!Invisible+Engines:+
How+Software+Platforms+Drive+Innovation+and+Transform+Industries!(The!MIT!Press,!
2006).!
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into!the!battleground,!pitting!producers!against!copyright!holders!and!other!artists.!
Musicians!themselves,!unsurprisingly,!grasped!these!conflicts!very!early,!including!
the!Grateful!Dead!lyricist!John!Perry!Barlow’s!“Selling!wine!without!Bottles!on!the!
Global!Net”!in!1992.16!There!is!money!to!be!made!in!controlling!distribution,!
regardless!of!how!much!was!ever!actually!reinvested!in!music!production!ore!
returned!to!artists,!and!the!full!forces!of!law,!technology,!and!culture!continue!to!
clash!over!the!reverberations!of!the!digital.!

In!science,!though,!the!consideration!of!the!digital!when!it!comes!to!software!
has!almost!all!been!on!the!benefits!of!reuse!and!recombination,!with!little!
consideration!or!even!controversy!focusing!on!the!downsides17.!The!emphasis!in!
science!on!the!benefits!of!reuse!makes!sense!because!the!downsides!and!
controversy!so!clear!in!the!commercial!world!are!not!salient!in!science.!This!is!
because!very!little!of!the!software!produced!directly!for!scientists!is!resourced!by!
direct!sales18,!so!there!is!no!need!or!benefit!in!controlling!access!to!the!product.!
Rather,!work!is!funded!through!grants:!upfront!payments!designed!to!pay!the!initial!
costs!of!production!with!the!expectation!that!the!very!low!marginal!costs!of!
reproduction!will!lead!to!widespread!reuse.!In!essence!this!is!a!public!goods!
argument:!we!“tax”!science!funding!once!to!pay!for!production!and!everyone!gets!
access!to!the!goods.19!

The!second!possibility!of!digital!products,!recombination,!also!seems!ideal!
for!science.!After!all,!science!proceeds!in!opening!up!unknown!and!very!hard!to!
predict!frontiers;!the!option!value!of!recombination!is!ideal!in!this!situation.!And!
indeed,!the!flexibility!of!digital!products!facilitates!linking!them!together,!opening!
up!components!of!analyses!or!datasets!for!recombination!into!many!different!
workflows.!Examples!abound:!addition!of!phylogenetics!to!BLAST!database!lookups;!
migration!of!sequence!analysis!techniques!from!biology!to!organizational!science.!

Of!course!there!are!downsides!of!the!possibilities!of!digital!goods!in!science!
as!well.!!While!science!holds!a!value!of!openness,!scientists!still!invest!time,!money,!
and!reputation!in!their!work.!Whether!this!be!in!investing!to!create!a!dataset!that!
they!hope!to!base!many!analyses!on,!collecting!samples!from!the!field!that!will!
support!many!years!of!work,!or!building!software!that!instantiates!an!analysis!with!
broad!application!potential.!Analogously!to!music,!then,!free!and!complete!
availability!raises!questions!about!whether!scientists!can!reasonably!expect!to!
access!the!latent!possibilities!of!their!investments,!or!whether!openness!will!result!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16!John!Perry!Barlow,!“The!Economy!of!Ideas:!Selling!Wine!Without!Bottles!

on!the!Global!Net.,”!1992,!https://homes.eff.org/~barlow/EconomyOfIdeas.html.!
17!Editorial!note:!This!ignores!debates!over!ownership!of!genomes!and!

struggles!over!the!IP!for!mouse!lines!etc.!It!ignores!the!whole!BayeEDole!struggle!to!
control!intellectual!property!(which,!honestly,!has!barely!touched!software).!

18!I!Editorial!note:!gnoring!SAS,!expensive!genetics!software,!lab!management!
systems!etc.!Even!my!software!citation!study!shows!at!least!35%!of!the!software!
mentioned!is!commercial,!although!that!includes!far!too!much!general!purpose!
software.!

19!Nathan!Bos,!Motivation+to+Contribute+to+Collaboratories:+A+Public+Goods+
Approach,!ed.!Gary!M.!Olson,!Nathan!Bos,!and!Ann!Zimmerman,!2008.!
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in!unfair!competition!(scooped!with!one’s!own!data)!and!ultimately!deter!valuable!
investment,!resulting!in!even!more!pressure!towards!work!of!the!“least!publishable!
unit.”!In!some!areas!of!science,!especially!highEenergy!physics,!these!questions!are!
increasing!approached!by!the!creation!of!consortia,!epitomized!by!the!two!consortia!
organized!around!the!Large!Hadron!Collider.!These!consortia!have!“memoranda!of!
understanding”!(MoUs)!that!govern!preferential!access!to!full,!minimally!processed,!
data!or!analysis!software!created!by!consortia!members!(at!least!in!the!short!to!
medium!term).!

In!this!book,!though,!I!will!make!an!extended!argument!about!the!downsides!
of!the!possibility!of!recombination!of!software!and!discuss!why!the!downsides!are!
both!worse,!more!invisible,!and!harder!to!manage!in!science.!In!essence!the!
argument!is!this:!over!time!recombination!and!extension!creates!complex!networks!
of!dependency,!leading!to!a!great!deal!of!work!in!managing!change!(of!systems,!
techniques,!and!software).!Unlike!with!music,!as!software!is!recombined!a!great!deal!
of!effort!is!involved!in!simply!keeping!things!working!together!as!updates!and!
changes!spread!unevenly!through!dependency!networks.!Understanding!and!
shaping!the!overall!patterns!of!dependency!(the!“ecosystem!architecture”!of!a!
“software!platform”)!is!key!to!accessing!the!benefits!of!recombination.!Yet!Science,!
unlike!both!the!commercial!software!industry!and!generalEpurpose!open!source!
software!distributions,!has!very!little!leverage!to!manage!and!shape!patterns!of!reE
use!and!recombination.!The!challenge!is!worse,!is!far!more!hidden,!and!there!are!
fewer!ways!to!address!it;!we!conclude!the!book!with!policy!suggestions.!

The)dual)nature)of)software:)artifact)and)practice)

A!second!overarching!theme!of!this!book!is!addressing!the!implications!of!a!
category!error:!far!too!often!we!address!software!as!(just)!an!artifact,!forgetting!that!
it!is!also!useful!to!think!of!it!as!a!practice.!Software!is,!of!course,!both;!one!might!say!
it!has!a!dual!nature.!The!artifact!nature!of!software!is!most!visible!and!easiest!to!
deal!with.!Most!of!the!policy!reasoning!above!starts!with!the!artifact,!as!a!digital!
object!capable!of!both!reuse!and!recombination.!

Yet!of!course!the!software!artifact!is!the!result!of!software!practice!and!it!is!
imbued!with!characteristics!as!a!result!(cite!Marx?).!The!software!artifact!is!also!the!
site!of!practice;!the!artifact!is!worked!with!and!worked!on.!It!is,!of!course,!just!this!
sort!of!work!that!has!a!tendency!to!become!invisible!in!infrastructures.20!More,!as!
we!will!see,!even!the!work!dealing!with!breakdowns!tends!to!invisibility!(at!least!in!
publications!and!policy),!as!it!is!distributed!among!users,!undertaken!by!technicians!
and!graduate!students.!Within!the!rapidly!changing!context!in!which!software!in!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20!Susan!Leigh!Star!and!Karen!Ruhleder,!“Steps!Toward!an!Ecology!of!

Infrastructure:!Design!and!Access!for!Large!Information!Spaces,”!Information+
Systems+Research!7,!no.!1!(March!1,!1996):!111–34,!doi:10.1287/isre.7.1.111;!
Charlotte!P.!Lee,!Paul!Dourish,!and!Gloria!Mark,!“The!Human!Infrastructure!of!
Cyberinfrastructure,”!in!Proceedings+of+the+2006+20th+Anniversary+Conference+on+
Computer+Supported+Cooperative+Work,!CSCW!’06!(New!York,!NY,!USA:!ACM,!2006),!
483–92,!doi:10.1145/1180875.1180950.!
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science!exists,!the!value!of!any!particular!version!or!configuration!of!software!is!
relatively!small!compared!to!the!importance!of!the!work!with!that!code.!!

The!discourse!on!“open!data”!in!science!parallels!the!situation!in!software:!
the!emphasis!has!been!on!the!data!as!an!object,!but!research!increasingly!points!to!
the!importance!of!the!practices!that!surround!the!data,!both!in!its!production,!its!
use,!and!its!long!term!storage.!21!The!same!reasoning!on!reEuse!and!recombination!
drives!the!policy!debate!(“public!money,!public!data”);!these!discussions!make!the!
most!sense!if!one!assumes!that!the!data!can!be!freed!from!the!practices!that!
surround!it.!Efforts!abound!attempting!to!solidify!the!history!of!the!collection!and!
processing!of!data!into!its!own!artifact,!the!metadata!record.!Researchers,!though,!
seeking!to!understand!friction!on!the!path!towards!more!open!data,!highlight!
investment!in!data,!practices!of!valuing!data,!and!the!work!needed!to!understand!
and!use!the!data!effectively.22!

Grasping!the!policy!challenges!and!policy!options!requires!peering!past!the!
artifact!and!into!the!practices!surrounding!it.!These!practices—this!work—more!
than!just!the!artifacts!themselves,!are!the!focus!of!this!book.!!

The&structure&of&the&argument&

The!book!is!divided!into!three!parts.!The!first!draws!on!empirical!work!to!
describe!and!analyze!the!work!that!scientists!do!with!software,!both!in!producing!it!
and!in!using!it!within!their!science.!I!draw!heavily!on!my!research!with!Jim!
Herbsleb,!but!also!on!the!studies!of!the!relatively!small!number!of!scholars!who!
have!studied!software!work!in!science.!I!seek!to!convey!an!understanding!of!how!
software!is!produced!and!used.!Then!I!draw!on!that!to!analyze!how!and!why!
software!becomes!less!useful!over!time,!introducing!the!concept!of!ecosystem+
context+to!locate!particular!projects.!I!then!turn!to!the!work!of!sustaining!software!
over!time,!developing!a!classification!of!different!kinds!of!work,!breaking!down!the!
category!of!“maintenance”!work!to!highlight!the!distributed!and!often!invisible!work!
that!stems!from!the!complexity!of!the!dependency!structure:!sensing,!adjustment,!
and!synchronization.!These!types!of!work!scale!differently!in!different!ecosystem!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21!Christine!L.!Borgman,!Jillian!C.!Wallis,!and!Matthew!S.!Mayernik,!“Who’s!

Got!the!Data?!Interdependencies!in!Science!and!Technology!Collaborations,”!
Computer+Supported+Cooperative+Work+(CSCW)!21,!no.!6!(August!2012):!485–523,!
doi:10.1007/s10606E012E9169Ez;!Christine!Borgman,!“The!Conundrum!of!Sharing!
Research!Data,”!Journal+of+the+American+Society+for+Information+…!63,!no.!6!(2012):!
1059–78,!doi:10.1002/asi;!Heather!A.!Piwowar,!Todd!J.!Vision,!and!Michael!C.!
Whitlock,!“Data!Archiving!Is!a!Good!Investment,”!Nature!473,!no.!7347!(May!18,!
2011):!285–285,!doi:10.1038/473285a.!

22!Paul!N.!Edwards!et!al.,!“Knowledge!Infrastructures:!Intellectual!
Frameworks!and!Research!Challenges,”!May!2013,!doi:2027.42/97552;!Christine!L.!
Borgman,!Big+Data,+Little+Data,+No+Data:+Scholarship+in+the+Networked+World!
(Cambridge,!Massachusetts:!The!MIT!Press,!2015).!
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contexts.!Part!One,!thus,!sets!up!the!challenge!that!longEterm,!sustained!software!
projects!and!the!scientific!software!ecosystem!as!a!whole!must!meet.!

The!second!part!of!the!book!looks!closely!at!the!software!production!side!of!
things,!focusing!especially!on!how!projects!come!to!have!the!resources!needed!to!
undertake!their!work!and!analyzing!how!this!affects!their!ability!to!manage!
ecosystem!complexity.!In!the!commercial!world!one!would!call!this!their!“business!
model,”!but!commercial!business!is!only!one!of!three!broad!resource+attraction!
systems!for!software:!open!source!peer!production!and!scientific!grantEmaking!are!
the!other!two!I!analyze.!Each!resource!attraction!system!provides!different!
capabilities!for!addressing!the!work!needed!for!longEterm!sustainability.!For!
example,!the!commercial!sales!process!provides!crystal!clear!counts!of!the!number!
of!users,!but!as!important!as!that!crude!measure!of!impact!is!to!scientific!grant!
using,!the!grants!process!provides!no!“builtEin”!record!of!software!use.!

Of!particular!importance!are!the!institutional!capabilities!that!each!resource!
attraction!system!offers!for!managing!the!complexity!that!results!from!
recombination!and!networks!of!software!dependency.!I!describe!ideal!forms!of!
ecosystem!architectures!that!shape!activity!in!ways!that!allow!perception!and!
management!of!dependency:!the!hourglass!and!the!proper!hierarchy.!I!highlight!the!
manner!in!which!control!or!influence!over!endEuser!developers,!through!both!
incentives!and!technological!structures,!is!key!to!establishing!and!maintaining!these!
ecosystem!architectures.!Finally!I!discuss!how!scientific!grantEmaking,!and!the!
wider!context!of!software!work!in!science,!undermine!the!ability!to!perceive,!let!
alone!shape!activity!towards,!ecosystem!architectures!that!manage!the!complexity!
that!results!from!recombination.!

Part!three!turns!to!implications.!I!outline!and!analyze!efforts!to!improve!the!
situation!for!scientific!software,!highlighting!those!that!could!give!leverage!to!
science!for!increasing!the!visibility!of!software!work!and!managing!ecosystem!
complexity.!I!then!return!to!the!intellectual!themes!of!the!book,!discussing!the!
usefulness!of!grasping!the!artifact/practice!nature!of!work!and!calling!for!a!new!
intellectual!emphasis!on!understanding!and!influencing!recombination.!
!
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The$Governance$Of$Software$Ecosystems$For$
Science:'Challenges'And'Policy'Recommendations'

For$Sustainable$Scientific(Software!!

Abstract 

The sustainability of scientific software is a key challenge for science policymakers and 

those interested in the effectiveness and governance of science. We approach this question by 

drawing on empirical studies of scientists using software and describe how components are 

arranged with complements and dependencies into value-providing assemblies, periodically 

revisited by their scientist users. Over time, software declines in scientific usefulness, driven by 

four factors: a moving scientific frontier and technological change, production friction, use 

friction and the software ecosystem context. In particular we highlight the impact of the 

complexity of ecosystem context, in terms of the diversity of use-contexts in which a component 

is used. We identify three broad strategies to address the need for work to sustain the usefulness 

of scientific software: suppress the drivers, reduce the amount of work needed, or attract 

sufficient resources able to undertake the work needed to sustain scientific usefulness. We 

examine three resource attraction systems: commercial markets, community-based peer-

production and grant-making. We describe how these systems bring resources to projects, and 

particularly highlight how both commercial markets and peer production address the challenges 

of ecosystem complexity while scientific grant-making does not. We conclude by making 

science policy and software ecosystem governance recommendations to address the challenges 

of sustainability, by enhancing the grant-making system and by facilitating transitions to other 

resource attraction systems. 

 

Keywords: science policy; governance; software ecosystems; peer production  
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1 Introduction 

Science depends on software.  From configuration and control of instruments, to 

statistical analysis, simulation and visualization, virtually every workflow that generates 

scientific results involves software.  Recent research suggests that scientists may be spending up 

to 30% of their time developing software and 40% of their time using software (Hannay et al., 

2009). Indeed, in many fields there is no scientific data without simulation models realized in 

software (Edwards, 2010).  

Visions of the future of science, such as the Atkin’s Report and the NSFs CIF21 vision 

(Atkins, 2003; NSF Cyberinfrastructure Council, 2007), frame software as much more than a 

supporting service: it can be a source of innovation and can enhance science by increasing its 

transparency, reproducibility, correctness, transferability and scale (Ince, Hatton, & Graham-

Cumming, 2012; NSF, 2012; Stodden et al., 2010). In particular the vision holds that the 

properties of software as an information artifact, its low marginal cost of reproduction and high 

potential for re-use and recombination, offers the potential for relatively small initial investments 

that can lead to increasing re-use and coalescence into widely used software platforms, resulting 

in widespread, long-lived, impact in the form of better science (NSF, 2012).  

Yet, as in other areas of human endeavor, software can also become a problem, 

consuming time and resources from science, with duplicated work, poor quality results and weak 

reproducibility (Atkins, 2003; Carver, Kendall, Squires, & Post, 2007; Dubois, 2005; 

Gambardella & Hall, 2006; McCullough, McGeary, & Harrison, 2006: 11; Segal & Morris, 

2008).  Indeed questions about the quality of software and software work in science were at the 

heart of recent debates about the reliability of scientific results for public policy precipitated by 

the so-called “Climategate” incident (Reay, 2010; Ryghaug & Skjølsvold, 2010). The potential 

contribution of software in science is thus undermined, resulting in practices that obscure rather 

than reveal the underlying science (Ince et al., 2012; Stodden et al., 2010) and expensive, 

frustrating, churn as packages are written and discarded. 

A pressing question for science policymakers (or indeed those interested in the 

organization of scientific work), therefore, is how to overcome these challenges and work 

towards the positive vision of software in science. At a very general level these are questions of 

how to govern (or shape) a software ecosystem combined with questions of how to govern (or 

shape) scientific practice. Each question is independently complicated and particularly difficult 
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in conjunction. More specifically, this includes questions of appropriate technologies and 

development practices, but also questions of how software and its production and use intersects 

with existing institutions.  While concerns about the effectiveness of IT investments are far from 

unique to science (Brynjolfsson, 1993; David, 1990), the specifics of science as a domain of 

human activity bring forward new and interesting questions, including how the different 

incentive systems involved in science structure work and innovation (e.g., David, 2002; Howison 

& Herbsleb, 2011; Huang & Murray, 2010; Riggs & von Hippel, 1994). In particular there is a 

growing realization that software is different from other scientific results because software, 

unlike publications, has substantial ongoing costs if it is to remain scientifically useful, a pre-

condition to achieving the hoped for gains to science, such as improved transparency, correctness 

and innovativeness.  Indeed one of the very few empirical studies of ongoing software work in 

science concludes that the ongoing work looks very similar to initial development work (Bietz, 

Ferro, & Lee, 2012), a finding that echoes the growing emphasis on post-development costs 

across the software industry (e.g., Boehm et al., 1995). 

Further, software is almost always composed from multiple components. This raises 

questions about how components and their different production systems interact, approaching 

scientific software in a manner analogous to an innovation ecosystem (Adner & Kapoor, 2010; 

Jansen, Cusumano, & Brinkkemper, 2013; Messerschmitt & Szyperski, 2005) and questions 

about how technological structures interact with policy and strategy (Baldwin & Clark, 2000, 

2006; MacCormack, Rusnak, & Baldwin, 2006). Finally, and practically, the challenge of 

scientific software raises questions of science policy, from what outcomes to prefer and what 

policy levers are appropriate for guiding activity towards those outcomes. 

Scientific policymakers are aware of these opportunities and issues and contemplating 

policy responses. The NSF has organized two workshops in recent years, “Software 

Sustainability through Investment” (Alexander, 2009), “Cyberinfrastructure Software 

Sustainability” (Stewart, Almes, & Wheeler, 2010) and a 2013 workshop at the Supercomputing 

conference (SC13) “Working towards Sustainable Software for Science: Practice and 

Experiences,” to consider challenges and solutions for sustainability in scientific software.  

In this paper we draw on our existing empirical research to characterize the problem of 

the sustainability of scientific software, and provide a framework for analyzing the issues in a 

way that provides recommendations for the governance of scientific software ecosystems. 
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1.1 Sustainability of what? Revisiting the goal. 

From an innovation and science policy perspective, scientific software is valuable to the 

extent that it ultimately advances the practice of science, contributing to the stock of knowledge 

that underlies modern societies and economies.  For this reason, we argue that it is most useful to 

begin by understanding how it is that software is used by scientists and how time affects the 

scientific value that software provides. 

We draw on results from a qualitative study of software in science, reported in detail in 

<blinded>. Figure 1, shows the results of reconstructing scientific software use. The 

reconstruction began with three high-quality papers in different fields (high-energy physics, 

micro-biology and structural biology) and, drawing on semi-structured interviews, built a 

narrative of how the science was undertaken, focusing on the role of software. The empirical 

work drew on the published articles, methods and materials sections and interviews with the 

authors and research staff involved in the science, identifying internal documents and source 

code produced in the course of the work.  

 
 

  
Figure 1: 3 concrete reconstructed workflows and 1 abstract representation 

 

In this way the research identified all the software used in the production of each paper, 

arranging the software according to the workflow of the science undertaken. This workflow 

grounded a narrative describing the software work underlying the science. Inspired by the 

literature on innovation and software ecosystems (Adner & Kapoor, 2010; Iansiti & Levien, 

2004; Messerschmitt & Szyperski, 2005), <blinded> described how and why each piece of 
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software was produced and what role it played in the science. They began with software written 

by the authors of the focal papers and extended outwards to the production of software used by 

the authors then further outwards the production of the software on which each piece of software 

depends. They grew this production web until encountering general purpose software whose 

production was not driven by its use in science, such as word processors and operating systems. 

One takeaway from these reconstructions was the location of any particular component of 

scientific software within a matrix of both complements (horizontal in Figure 1) and 

dependencies (vertical in Figure 1). Complements are those components which undertake other 

aspects of that workflow, such that the high-level components together provide the collection of 

information processing needed to generate the scientific result. Dependencies provide the 

services which components higher up the stack utilize, either to provide still more services to yet 

higher level components or, ultimately, to carry out steps of a scientific workflow. While 

complements are often quite visible to the scientist who has likely handled that software 

themselves, dependencies are often incorporated indirectly, brought into place by one of the 

complements. 

In the parlance of software practice, the top-level horizontal view is typically called a 

workflow (e.g., Gil et al., 2007), while the vertical view is popularly called a “software stack."1 

The arrangement of multiple elements into software has been referred to in the academic 

literature as the "software architecture," (Garlan & Perry, 1995; Garlan & Shaw, 1993), sparking 

a fruitful field of inquiry into the characteristics of software composition. Yet the work our 

informants described did not much resemble architecture, with the implication that the architect 

is aware of all the software implicated, envisions the components as a system and engages in the 

joint optimization of that system. 

Software as it was used by the scientists we spoke with was not just functionality that 

results from a composition of functional elements, but also includes preprocessing, post-

processing and presentation elements that are brought loosely together and used to accomplish a 

scientific purpose (Anderson, Ash, & Tarczy-Hornoch, 2007). Accordingly we call the work that 

the domain scientists in our study engaged in “assembly,” emphasizing the manner in which they 

arranged existing components, sometimes enhancing them with glue code or new, customized, 

components specific to the scientific problem they are addressing.  Accordingly, we call the 
                                                
1 http://en.wikipedia.org/wiki/Solution_stack 
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result of the scientists’ work a "software assembly," made up of many existing components and 

perhaps one or two custom components brought together through mixed scientific and software 

work. 

1.2 Scientific assemblies over time 

In one sense the scientist’s software assembly exists to execute and support the specific 

piece of science embodied in a specific paper. Yet, over time, scientists revisit their assemblies, 

seeking to re-use them as they push forward the frontier of their science. While our informants 

often used the word “replication,” in practice they revisited their assemblies to apply them to 

new data and to enhance them with changes, perhaps the addition of a new processing step or 

using a new, better, algorithm in place of one used before. The scientific frontier moves forward 

and the software assembly must move with it.  

Revisiting software assemblies raises the question of what happens to these assemblies 

over time. The clearest, but trivial, answer is nothing. At their core software assemblies are 

compilations of 1s and 0s and given the trivial resources of electricity and disk storage they can 

exist indefinitely as they were when first assembled.   

Yet, in practice, the assembly’s relationship to scientific work changes and its scientific 

usefulness declines. The scientist is not just running the code, but seeking to work with the code. 

The desire to work with the code drives the scientist towards current, updated, versions of 

complements, if not to take advantage of new knowledge reflecting recent scientific advances 

embodied in new versions of software, at least to take advantage of new features, better 

performance, new hardware support, the possibility of relevant documentation and the 

availability of support, either from the developers or the user community.  

This dynamic is quite apart from the difficulties of even running old code in the first 

place. In practice, it appears that scientists are rarely aware of the software assembly as a whole, 

due to the indirect incorporation of dependencies. Rather they focus on the portions considered 

most primary, essential or novel. Thus storage may take the form of storing the full horizontal 

workflow or, more frequently, it may take the form of storing only bespoke components and 

plumbing work and listing complements. In many cases, storage is quite possibly more the result 

of inaction rather than action, with the scientist having simply left the files where they were 

when the science was conducted. After all, the paper is published and the scientist's attention is 

elsewhere. 
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Thus, for a software assembly to be re-visited and worked on, it must be laid out with all 

complements and “on top of” its dependencies. The work of re-animating the assembly, even 

those parts the scientist does not want to change, requires a sort of “software archeology”2 

whereby the appropriate dependencies are identified, located and placed into service. Since 

dependencies were often implicit and invisible at the workflow level even identifying 

dependencies can involve a recursive and frustrating process of reading the "build files" of each 

component, translating from various barely human-readable formats and puzzling out their 

implications. The scientist, or more likely, the graduate student, undertaking this work will 

typically find that the components they are seeking have themselves changed over time, as 

discussed below, requiring them to trade off the work of obtaining historical versions and getting 

them to work, against the work of adapting surrounding components to work with newer 

versions. It is far from uncommon to discover what appear to be cyclic dependencies, to require 

missing historical versions, or to require multiple, incompatible versions, requiring some level of 

jerry-rigging at points in the stack. This experience is common to those working with software, 

even outside science, and is described as a descent into "dependency hell."3 

Even in the best of circumstances, then, the work of extracting ongoing scientific value 

from software requires considerable work for the scientists.  Even if the rest of the software 

ecosystem had stood still, the moving frontier of science and the opportunities afforded by new 

hardware build in dynamism at the edge. 

But of course, the software ecosystem does not stand still; scientists revisiting assemblies 

find that the components themselves have changed, often rapidly and in ways that require extra 

work from end-user scientists (Bietz, Baumer, & Lee, 2010; see also Bietz et al., 2012). To 

understand why, we must move our focus from the scientists preparing a particular paper to the 

projects producing the components the scientist is assembling.  

From the perspective of component producing projects, matters are both similar and 

different. In one important sense any component is likely to itself be a software assembly: the 

component has both dependencies and internal complements (external components that 

participate in the flow of computing that the component as a whole produces).  Further, like end-

users, component producers are themselves subject to the same pressures that drive forward work 

                                                
2 http://en.wikipedia.org/wiki/Software_archaeology 
3 http://en.wikipedia.org/wiki/Dependency_hell 
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at the edge.  They must manage changing opportunities offered by new hardware or execution 

architectures. They too are motivated to improve their software, extracting greater or more 

reliable performance. Moreover, many component producers themselves participate in the 

scientific reputation economy, seeking to publish papers describing the advance of their tools, or 

obtain new grants based on feature extension (Howison & Herbsleb, 2011). In short, the 

component producer’s own scientific frontier moves forward, driving a need for novelty and 

progress. 

On the other hand, matters at a producing project are different. A project producing code 

that others use, unlike an end-user scientist, has its artifacts passing into the scientific practice of 

others. A component producing project has to not only produce potentially useful software, but 

help its users realize that usefulness, supporting their use by documenting code, providing 

examples and tutorials and, inevitably, answering questions. 

And there may, of course, be many users. Thus the component might play a role in a 

many different assemblies, interacting with many sets of data, complements and dependencies. 

Some of these assemblies might be relatively similar, while some might be quite different, such 

that the component can be arranged with different complements and dependencies, or perhaps 

even more complexly, occupy broadly similar but subtly different positions. Moreover each of 

these assemblies is being constructed and reconstructed at different points in time and changing 

at different paces, driven by the changing scientific frontier and work rhythms of its scientist 

users.  

The image that presents itself (if we might be allowed considerable poetic license), 

pulling back to consider a wide-lens view of all the software assemblies at once, is one of 

components brimming with dynamic potential, vibrating in place, moving sideways to make 

room for new complements, shifting downwards as new components build on their capabilities, 

sometimes jumping to other kinds of assemblies entirely. Such a complex system is never in 

stasis, nor does it change in regular or predictable patterns. To the extent that it supports 

scientific work at all, it does so because of people's work on, with, and around components, 

continually re-shaping them so they are scientifically useful in a particular position in a particular 

arrangement at a particular time.  
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If the work is not done, things break down. Components cease to merely vibrate in their 

many assemblies but begin (if we might be allowed a continuation of our poetic license), to 

rattle, to shake, to expel themselves from their place, like cogs flying free of a machine.  

Yet scientists are still driven to do their science and their work does not stop. Rather, a 

tension builds up around an assembly, frustrating its users and generating motivation to find a 

different component that fits this changed niche. Either the scientist themselves, or their grad 

student or post-doc, writes a new component more or less ideally fitted to this problematic hole 

in the assembly, or the need is so widely felt that a new project emerges to fill the hole with a 

new component. The component spreads out into other assemblies, both end-user and 

component-producing, sparking new rounds of adaptation and adjustment as end-users revisit 

their assemblies.  As time moves forward, assemblies continue to change shape and this new 

component itself, once ideally-fitting, begins to vibrate, perhaps even to rattle a little, requiring 

its own work to sustain its usefulness. 

Sustaining the scientific usefulness of software in our illustration above, is above all a 

matter of work. Accordingly, we argue for a definition of sustainability as the condition that 

results when the work needed to keep software scientifically useful is undertaken. The work 

takes many forms, from assessing and meeting new scientific or hardware opportunities, 

adjusting and adapting components, and supporting users. Of course, while we have not 

emphasized it above, producing software itself involves significant work, from understanding 

what to build, gathering the resources to attract team members, coordinating development in 

sometimes far-flung teams and integrating contributions; even distributing new versions of 

software to others is significant work.  

To realize the potential of sustained innovation envisioned in the cyberinfrastructure 

vision we argue that the need for work of all these kinds must be addressed. These needs can be 

addressed in three main ways: 1) suppressing the causes that drive the need for work, 2) reducing 

the effort needed to do the work, or 3) attracting and retaining the resources needed to do the 

work.   

We now turn to lay out more formally the factors that drive the need for different kinds of 

work, focusing in particular on the impact of ecosystem context. We then characterize the broad 

strategies for addressing these needs, focusing in particular on the capabilities of different 

resource attraction systems to face the challenges of particular ecosystem contexts. We conclude 
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by recommending appropriate science policy responses aimed at improving the effectiveness and 

efficiency of the scientific software ecosystem to in supporting science. 

2 What drives the need for different kinds of work? 

If the scientific usefulness of software is to be sustained, four drivers of needed work 

must be addressed: 1) exogenous drivers, 2) production friction, 3) use friction, and 4) ecosystem 

context. 

2.1 Exogenous drivers 

Two key drivers that require work are 1) progress in science and 2) changes in underlying 

technologies.  The progress of the scientific frontier throws up new questions, data and 

approaches, both within fields already heavy in computation and as fields develop computational 

methods.  The progress of science is uneven and extremely difficult to predict. Scientific 

opportunities are also urgent, linked as they are to the opportunity for scientific priority and the 

reputational rewards that come with it. 

The invention of new computational technology also plays a role in creating a need for 

work in scientific software.  This is clearest when a new generation of hardware technology 

arrives, such as the development and spread of parallel computational architectures, the 

widespread availability of specialized GPUs, or the ubiquity of mobile computing. These 

underlying changes create opportunities to exploit new performance capabilities.  In some cases 

they reduce the cost or time of computation in a manner which passes a threshold and brings 

techniques previously too expensive within the bounds of possibility. 

2.2 Production Friction 

A clear set of factors driving work in scientific software are linked to the production of 

software. In short the production of code is not a simple, smooth process, but requires significant 

knowledge and effort to execute successfully. This is true whether we consider the initial 

production of novel software components, or on-going improvement or adjustments. Even if the 

rest of the drivers of work are held constant, it is difficult to know what to build, to create a 

design that meets requirements, to realize it in code and to test its performance. Since 

development projects are often large enough to be beyond the capabilities of individuals, 
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additional friction derives from working in teams (even if all resources are committed): 

designing appropriate task breakdowns, managing interdependencies, integrating contributions as 

well as managing conflict and providing leaderships. 

2.3 Use Friction 

If code is to become widely useful in science, the code must find its way from its 

production environment to scientist users, be assembled with dependencies and complements, 

and be configured appropriately. As with production work, this is far from a smooth path. 

Software must be released: it must be packaged and made available to users for download, both 

initially and for new versions. If users are to use the code effectively they must come to 

understand its potential, its operation and its limitations, both initially and with on-going 

releases. As described above any component must be arranged with complements and 

dependencies in order that it do scientifically useful work. This means understanding interactions 

between components, often in situations unanticipated by the component’s producers. 

2.4 Ecosystem complexity 

A fourth driver of work derives from the complexity with which components are arrayed 

by scientific end-users and the frequency and rhythm of change of those components.  To 

understand this driver, we consider an aggregated view of science end-user assemblies and to 

consider the position of individual components within that aggregation. The relationships of use, 

complementarity and dependency form a complex web which has been referred to as a software 

ecosystem (Adner & Kapoor, 2010; Jansen et al., 2013; Messerschmitt & Szyperski, 2005). 

We argue that the manner in which a scientific software system drives the need for work 

can be understood by drawing on two dimensions: 1) users, a simple count of the number of 

assemblies that a component appears in, and 2) use-contexts, the number of different positions 

that a component appears in across assemblies. Use-contexts are loosely related to scientific 

fields, but since different fields can use components with similar complements and dependencies, 

and different scientists within a field can array the same component differently, the relevant 

context is not the discipline of the scientists, but the “neighborhood” of components with which a 

component is arranged. 

We refer to the combination of these dimensions as ecosystem context. Figure 2 

illustrates this, with number of users on the vertical and number of different use-contexts on the 
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horizontal. We show the top left as generally unreachable, because although some use-contexts 

might have a relatively large pool of potential users, others will only have a small pool, thus in 

general the highest potential number of users can only come by moving rightward, implying a 

larger number of use-contexts. Similarly the bottom right, reflecting a high number of use-

contexts but a low number of users, is practically unlikely because each different use-context 

implies use in a different software assembly, implying at least one user per assembly. 

Nonetheless, there is a wide variety of ecosystem contexts available: from the bottom left of a 

component with only a single user (and thus a single use-context), to the middle-left of a 

component with only a few use-contexts, but each with multiple users, to the upper-right, 

reflecting a component arrayed in many different use-contexts and having many users. Each of 

these dimensions is associated with a different balance of production and use friction and thus 

needed types of work. 

 
Figure 2: Ecosystem context 

2.4.1 Greater user numbers 
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each with similar use-contexts—production friction stays relatively constant while use friction 
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done with any single user and the project must only monitor and learn of changes to a single set 

of complements and dependencies.   

Use friction, on the other hand, rises with the number of users, each of whom must come 

to know how to make use of the component, obtain, and array complements and dependencies.  

More users, even with identical use-contexts, brings with it more questions that must be 

answered; this is especially true because users, even with identical use-contexts, are likely to be 

at different places on their learning curves.  Yet because use-contexts are similar, as with 

solutions to production problems, solutions to use problems are more likely to be re-usable. In 

this way documentation useful to one user is likely to be useful to others, and answers of 

questions for an early stage user are likely to remain useful as other users, new to the component, 

begin their use.  

2.4.2 Greater numbers of use-contexts  

The dimension of use-context is associated with a different balance of production and use 

friction.  As one moves horizontally and considers components with a greater diversity of use-

contexts, production friction rises, while use friction remains relatively constant.  Production 

friction rises because each use context implies a different source of change through the 

complements and dependencies with which a component is arranged. When a neighboring 

component changes, there is a need to understand those changes, assess whether a response is 

needed and to produce the relevant changes to retain the scientific usefulness of an assembly. As 

we will discuss below, this work can be (and often is) done at different places in the ecosystem, 

including by the end-users or the producing project. If it is done by other than the end-users then 

each adjustment also implies more production friction, in the form of packaging, releasing, and 

distributing the relevant changes. 

If a change in a single surrounding component drives a need for production work, change 

occurring across the variety of use-contexts implies a rapid increase in production work; indeed 

because this work is driven by the combination of components and the solutions produced are 

not necessarily re-usable, or even compatible, the increase in the need for production work is 

super-linear as the diversity of use-contexts rises. 

The frequency and rhythm of change in surrounding components can also drive a need 

for work. Frequency matters because each individual change in a neighboring component implies 
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a round of assessing, adjusting and, perhaps, distributing changes. Therefore frequency of change 

acts similarly to changes in the scientific frontier and underlying technologies, injecting new 

needs for adjustment work.  The more frequent the changes, the more work that needs to be done 

to keep a component scientifically useful. 

The rhythm of change can also be important. This is because adjustments take time to 

spread through the network of dependencies and out to end-users. At some point new changes 

could be occurring before the adjustments to the last changes have spread throughout the 

network, especially if changes occur close together in time.  This leaves some users working 

with older versions, complicating user support and adjustment to changes in surrounding 

components. If the exogenous needs for change are pebbles dropped in a pond, the impact of 

rhythm and pace can be thought of as ripples catching up with and over-taking each other; 

adjustments originating in the same place, but at different times and traveling through scientist’s 

software assemblies at different speeds. 

The impact of the frequency and rhythm of change depends on the ecosystem context, in 

terms of number of users and diversity of use-contexts. This is best understood considering a 

project monitoring how its component is being used and undertaking production work to adjust 

for changes in its use-context.  If that component has many users, but they are all using the 

software identically, then a change in the use-context is relevant to all the users at the same time. 

Provided the component producing project hears of and understands the change, a solution can 

be produced and distributed to all users. The frequency and rhythm of changes may vary, but the 

requirements occur at the same time, and the adjustments are relevant to all users at the same 

time.  

However, when use-contexts vary, adjustments may be called for by many different 

components at the same time. Moreover each adjustment may be relevant to only some of the 

use-contexts, and not to others (or worse, an obvious solution for one use-context might be 

incompatible with others).  This can be illustrated as dropping multiple rocks into a pond in 

different areas at different intervals; as the ripples move outward they begin to overlap and 

interact, crisscrossing or perhaps doubling-up. 

Finally the already complex situation can be further exacerbated because adjustment 

work does not only occur at a component producing project, but can also occur at scientific end-

use points. This might occur because the end-users are under deadlines, do not understand the 
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origins of different components, or do not relish interacting with (and thus being dependent on) 

other groups to manage the changes they perceive in surrounding components (e.g., Howison & 

Herbsleb, 2011).  Such changes can quickly lead to bifurcations in use-contexts between user 

assemblies (changes in a component’s neighborhood) and a component producing project can, 

without their knowledge, move from having few use-contexts to the much more complex 

situation of having many use-contexts.  Worse, as use-contexts multiply the demands on a 

component producing project to collect and respond to changes rise, potentially creating 

additional delays that lead to further end-user adjustments and exponentially exacerbate the 

problem. 

Table 1 shows the kinds of work called for by these different drivers. 

Production Work 
 Design Deciding what to build 
 Development Building the design 
 Integration Adding new contributions to the existing codebase 
 Release work Making code available 
 Management work Coordinating contributors 
User Support 
 Documentation Providing non-code resources to explain software use 
 Answering questions Helping users by answering specific, contextual, questions 
Ecosystem Work 
 Sensing  Observing use-contexts to see changes in surrounding 

components 
 Adaptation Adjusting components to continue to work 
 Synchronization Collecting adjustments for release to avoid cascading re-

adjustment 
Table 1: Different kinds of work required to sustain the scientific usefulness of software 

3 What can be done about the needed work? 

Sustainability in scientific software is a problem because the four factors outlined above 

require ongoing work to ensure the ongoing scientific usefulness of software.  In this section we 

outline three broad strategies to addressing these needs.  The three broad strategies are 1) to 

suppress the factors driving the need for work, 2) to reduce the amount of work needed, and 3) to 

attract resources willing and able to do the work needed. In the following sections we consider 

the feasibility and realization of each strategy in science. 
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3.1 Suppressing the factors driving the need for work 

The simplest way to address a need for work is to suppress the factor driving that need.  

3.1.1 Suppression of exogenous drivers 

An obvious initial strategy is to avoid the issue entirely by not using software at all, thus 

obviating the impact of all other factors. A second, less severe, strategy would be to reduce or 

eliminate change resulting from the progress of science or the production and introduction of 

new technologies.   

Indeed, analogies to these approaches are indeed used outside science. For example the 

music business is notorious for seeking to resist the introduction of disruptive new technologies 

or approaches, or at least to slow their introduction while they adjust other aspects of the industry 

(such as streaming licensing agreements) to preserve the profit-making potential of the industry 

(e.g., Leyshon, 2001). This includes efforts to synchronize and pace the introduction of new 

technologies, facilitating their saturation of the market prior to introducing the next technology. 

On a less grand scale, however, suppressing the introduction of new technologies is a 

common technique in large organizations. By standardizing a technology across an organization 

and resisting the introduction of others, the organization trades some innovative potential for 

reduced complexity (Alt, 1964; West, 2006).  A classic example is standardizing on the use of a 

particular language, say Java, and restricting the use of newer languages, such as Ruby. Other 

examples include suppressing the introduction of a new generation of a technology into an 

organizational ecosystem, especially until the organization as a whole has transitioned, and 

perhaps choosing to skip a generation (or many generations). An example would be choosing not 

to upgrade from Windows 95 to 98, but moving directly to Windows XP.  Those responsible for 

strategy in the organization perceive the complexity of cascading adjustments needed, choose to 

suppress a cause, and shoulder the frustration at the edges that commonly results from such 

policies. 

Within science, of course, this strategy is problematic not only because of the high 

valuation of innovation, but also impractical because of the lack of centralized decision-makers 

with appropriate insight and legitimacy to command and enforce any suppression oriented 

strategies.  Further the periodic, rather than continuous, nature of scientific end-use reduces the 

value to be derived from exploitation of existing technologies (which have aged and possibly de-
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synchronized in the time elapsed between revisiting software assembles) and prompts efforts to 

be “up to date.” Nonetheless, suppression strategies can be and are enforced more locally, such 

as within individual labs, centers or scientific collaborations.   

3.1.2 Suppress the impact of complexity of the ecosystem context 

A second set of strategies focuses on the work requirements driven by ecosystem 

complexity. As argued above, the need for sensing, adjustment and synchronization work is 

primarily driven by the diversity of use-contexts with which a component is arrayed.  Yet the 

impact of changes in these diverse use-contexts and the route that impact passes through the 

ecosystem can be affected by the overall ecosystem structure, particularly the creation of layered 

and platform architectures (Baldwin & Woodard, 2009; Baldwin & Clark, 2000; Boudreau, 

2010; Garlan & Shaw, 1993; Gawer & Cusumano, 2002; Iansiti & Levien, 2004).   

Figure 3 depicts three idealized ecosystem structures.  In this illustration two 

components are connected if they are used together in at least one software assembly (whether 

that be as a dependency or a nearby complement), thus these diagrams are different from the 

software assemblies of Figure 1. The lines represent potential paths of change impact, 

transferring through the software ecosystem and generating a need for adjustment at the 

component. One can think of these diagrams as transmission paths, such that a change at a 

particular component (perhaps resulting from a change in the scientific frontier) acts like a 

“pulse” and can be transmitted along these lines. When that pulse reaches a connected 

component, adjustment work there might cause a new pulse, such that components connected to 

the newly adjusted component now may need to undertake adjustment work. 

 
  

Panel A Panel B Panel C 
Figure 3: Structure of component co-use aggregated across software assemblies 

 (lines indicate components are used together in at least one software assembly) 
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Panel A of Figure 3 illustrates a randomly connected component graph, including 

relatively dense interconnection, long paths and circular connections. Changes initiated 

anywhere in this network can have impact across the graph, sparking resulting adjustments that 

cascade chaotically throughout the graph.  Some components are heavily connected (reflecting 

use in a high diversity of use-contexts), concentrating work requirements and creating bottle-

necks for adjustments. The circularity of the interconnection even raises the possibility of self-

sustaining loops, where the ecosystem never completes adjusting to a cascade of changes. 

Panel B depicts a hierarchical arrangement of interconnections, often known as a layered 

architecture. Connections follow single, hierarchical paths, excluding the possibility of 

circularity. A change in component requirements in such an ecosystem radiates “up-stream” until 

finding a position of maximal generality, before finding a route back “down-stream” to 

minimally connected components which are end-points for waves of adjustment.  Fewer and less 

complex paths of interconnection restrict the impact of ecosystem complexity and minimize the 

needed work. 

Panel C depicts a further refinement of the hierarchical structure, separating components 

into different types and collecting those that are densely or circuitously interconnected into a 

platform. The platform acts as a single large component, hiding complexity from the ecosystem. 

Changes from the edges collect in the platform, general solutions can be found and released in a 

synchronized manner, reducing cascades of adjustment. In the particularly idealized arrangement 

shown in Panel C, components above the platform have no connection other than with the 

platform. Not all platforms realize this additional constraint, for example Apple’s iOS comes 

close (applications on a phone do not rely on services from each other) while components using 

the Eclipse or R platforms often draw on services provided by other, non-platform, components.  

Fewer interconnections outside the platform implies trading off potentially innovative 

recombination at the edges in order to suppress ecosystem-wide requirements for on-going 

sensing, adjustment and synchronization work. 

Ecosystem-wide architectural patterns can be powerful in suppressing the need for work 

to maintain the usefulness of components.  Indeed, science policy-makers are well aware of the 

usefulness of platform architectures, as indicated in the NSF’s CIF21 software agenda (NSF, 

2012) and the popularity of the “middleware” architectural design pattern.  Yet it is rarely noted 

that achieving rationalized architectures involves influencing the behavior of end-users, not only 



  Submission #18373 

   19 

component producers. This is because, as we have argued above, ecosystem context derives not 

from design intentions at component producers but from the manner in which end-users put 

together components. In hierarchical organizations behavior of end-users can be enforced 

through top-down, directive, policies, such as that employed at Amazon by “Dread Pirate Bezos” 

(Yegge, 2011), requiring all components to implement a web-services interface and to use 

Amazon’s infrastructural services. Firms selling components can enforce particular conditions on 

their use (as Apple does with its iOS platform, particularly through controlling access to its App 

Store).  

Yet science policy-makers do not have directive power over scientist end-users; in fact 

directive control would be seen as illegitimate since that would undermine the freedom of 

scientists and the wellspring of innovation seen to underlie scientific progress. For example 

policy-makers cannot require the use of particular software components, choose not to place 

requirements on the use of components they have funded with other components, nor can policy-

makers prevent end-users from creating (and then releasing) custom components. As a 

consequence, creating and maintaining rational architectures is a particular challenge; we 

consider options to use this strategy that are available to science policy makers in our conclusion. 

3.2 Reduce the effort required to do the needed work 

Efforts to suppress the drivers of work requirements can be powerful, but short of 

abandoning software, its re-use, or its innovative recombination, suppression will not be 

complete and requirements for work will remain.  Accordingly, an appropriate focus is on efforts 

to make the work easier to accomplish, requiring less effort to satisfy the requirements for work. 

A great deal of effort has been focused on this topic, especially in the field of software 

engineering which has created tools, principles and processes focused on reducing the difficulty 

of software work. 

For example integration of code from two or 1000s of people is made more tractable by 

technologies from file diffs, to merge conflict reports in cvs, to git patch sets and github's pull 

requests and pull request discussion forums. Releasing is much improved by compiler 

technologies such as universal binaries or build-systems, from make to Capistrano, that automate 

and regularize build, test and deploy, extending to efforts like the NMI Build and Test facility 

(Pavlo et al., 2006). Similarly user support can be facilitated by ticket tracking systems and 
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customer relationship management systems. Even some aspects of synchronization work 

resulting from ecosystem complexity are the targets of technological time-savers, such as 

continuous integration extending beyond unit testing to integration testing in lead-user 

workflows (e.g., Trader, 2012). Some projects aim even higher, working to build infrastructure 

that automates software production itself, by mapping from mathematical proofs (e.g.,&
Bientinesi,&Gunnels,&Myers,&Quintana4Ortí,&&&Geijn,&2005) or machine learning techniques like 

genetic algorithms. These tools are akin to the application of capital machinery to improve the 

profitability of manufacturing, by both reducing costs and risks. 

Design principles can also reduce the work needed. For example the principle of 

information hiding modularity is argued to reduce the complexity of integration work in 

production (Parnas, Clements, & Weiss, 1981). Ecosystem drivers of work can be reduced when 

producers follow the principle of only allowing slow change of interfaces for components on 

which much depends or other techniques designed to facilitate efficient evolution of software 

architectures (e.g., Garlan, Barnes, Schmerl, & Celiku, 2009). Practice-led principles of 

collaborative development are also important, such as "avoid codebombs" or "head must always 

build" (Howison & Herbsleb, 2013) because they mitigate integration work, while governance 

principles such as Apache's action-oriented +1/-1 veto rules play a role (Fielding, 1999; e.g., 

O’Mahony & Ferraro, 2007). Other principles, such as the usefulness of cultivating a community 

of active users can reduce the impact of providing user support (e.g., Lakhani & von Hippel, 

2003). Finally software process methods, such as agile methodologies are designed to reduce the 

gaps between requirements and development, and also make synchronization work easier, by 

bringing producers and potential users closer together through shorter cycles of development and 

release (e.g., Beck et al., 2001). 

These technologies and principles can sharply reduce the amount of work necessary and 

are undoubtedly important to the overall challenge of sustaining scientifically useful software 

and software projects. Yet, just as the requirements for on-going work cannot be completely 

suppressed, two factors mitigate against efforts to reduce the difficulty of the work required as 

complete solutions to sustainability. Efforts in this direction never entirely eliminate the need for 

work and they are themselves work to establish and sustain. Consider the initial effort needed in 

educating a lab in the proper use of git, or the effort to seek appropriate workflows for 

continuous integration testing. Even once established, techniques and technologies require effort 
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to sustain them, such as the inevitable work needed in, for example, keeping a continuous 

integration system itself up to date.  

In summary, then, tools and techniques are crucial to software sustainability and the 

cyberinfrastructure vision: without them the amount of work needed would simply be 

prohibitive.  Yet work reduced by orders of magnitude is nonetheless work; if no one is available 

to do it then all the labor-saving technologies in the world will not sustain a project, nor the 

scientific usefulness of the software it produces. 

3.3 Attract people willing to undertake the work needed 

If the need for work to maintain the scientific usefulness of software cannot be 

suppressed nor effectively eliminated by making the work easier to do, then the work must be 

undertaken by people. This means that projects must attract human effort (and continue to attract 

it), drawing together motivated actors with appropriate skills to undertake work. The manner in 

which this is done we call the resource attraction system, which refers to collective mechanisms 

which establish incentives for people to participate in scientific software projects.  We discuss 

three abstract resource attraction systems: commercial markets, open source peer production and 

scientific grant-making. While much could be said about each system, below we consider how 

they scale across the two dimensions of ecosystem context, particularly how they address 

complexity resulting from wider use-context diversity. 

3.3.1 Commercial markets 

A project selling software in a commercial market attracts resources by restricting the 

availability of its product to only those willing to pay, thus receiving revenue in the form of 

money. This money is then available to motivate work through the payment of wages or 

purchasing services from other market participants, thus motivating the accomplishment of the 

necessary work.  

As the number of users rises, so does the revenue received as each user pays their 

licensing fee; resources available to the project rise linearly with the number of users. Assuming 

there are sufficient users willing to pay (a non-trivial condition) this enables the project to cover 

initial development costs and pay employees to ease use and distribution friction.  

As the number of different use-contexts rises, projects employing commercial sales face 

the need for work driven by ecosystem context. Yet the act of a sale helps to accomplish insight 
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into use-contexts, facilitating sensing and adjustment work. This is because as a side-effect of 

sales, a project drawing resources from commercial sales learns about their customers. Since a 

sale requires payment, companies learn the identities of their users, facilitating on-going contact.  

Sales themselves also give insight into the use-context of the customer.  In small contexts this 

may result from detailed sales interactions as the company provides pre-sales support to users, 

work that is funded by the additional revenue derived from that specific sale.  At larger scales, 

information about the suitability of the product in a changing software ecosystem comes directly 

from the pricing system, dissatisfaction reflected in customer’s declining willingness to pay. 

3.3.2 Open Source Peer Production 

Peer production is the resource attraction system that functions in successful non-

commercial (or community-based) open source software projects (Benkler, 2002; von Hippel & 

von Krogh, 2003). Despite the common association, peer-production ought to be distinguished 

from "open source." Being open source is a characteristic of the code, while peer production is a 

characteristic of how it is produced: it is possible to be open source but not to be resourced by 

peer production (for example many grant-funded or even commercial projects are).  

The literature on motivation to participate in open source has identified a set of non-

monetary motivations, from the use value of the software itself, an opportunity to build 

reputation, an opportunity for learning, to a chance to express a communitarian ideology and to 

work in teams (Crowston, Wei, Howison, & Wiggins, 2012; Roberts, Hann, & Slaughter, 2006). 

Resources (in the form of direct labor) are attracted to projects that provide circumstances in 

which these motivations can be satisfied (Benkler, 2002; Crowston, Wei, Li, Eseryel, & 

Howison, 2005; Howison & Crowston, 2014; Ke & Zhang, 2010; Michlmayr, 2003).  

Despite the oft-celebrated differences from markets, the manner in which peer production 

attracts resources can be understood in a broadly similar fashion. The analogy to market 

allocation is clearest when considering the use value of software as a motivator: software that has 

use value (because it reduces a user’s expenses) frees up money that can be directed to fund 

employee's participation in an open source project. Germonprez and Warner (2012) call this 

“leveraged development.” The value generated by the use of the software is sufficient to 

motivate paying an employee to participate. But money doesn't have to be involved: a user that 

uses a piece of software to get their scientific work done might easily perceive that it is of value 
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to them to do the work needed to include that component in their software assembly, or to 

undertake development work to improve a feature. In this sense resource allocation is 

decentralized and relatively undirected: participants build what they are motivated to build. 

Unlike a market, however, the type of work that a prospective participant will do is 

linked to the motivations that attract them to the project in the first place (Conley, 2009; Dalle, 

David, & Rullani, 2009; Hertel, 2007; Howison & Crowston, 2014). Not all kinds of work can 

satisfy different kinds of motivations: a motivation to adapt the software to produce scientific 

plots for a particular scientific problem does not motivate the provision of support to other users.  

As the number of users rises, peer production projects do not automatically gain 

additional resources, unlike commercial sales. In fact, peer production projects can be 

ambivalent to rising user numbers.  Terry et al. (2010) found that developers saw non-

contributing users as additional sources of user support burdens, rather than sources of rewards 

and motivations.  On the other hand, developers motivated by reputation or status might see high 

users numbers as an advantage, although this is more likely to motivate development work than 

it is individual user support. 

As the number of use-contexts rises, peer production faces intensified sources of 

complexity from ecosystem context.  In fact the ease with which open source components can be 

combined implies more re-use of outside code than might be found in commercial sales, where 

each dependency might need to be separately licensed. Further, the freedom to download open 

source code also implies that peer production projects do not have legitimacy to register their 

users and so do not have contact or tracking information for their users, reducing their ability to 

track change in use-contexts.   

What peer production projects do have, however, is openness to contributions from their 

users, both in code contributions and by hosting discussion forums. Users are empowered and 

encouraged to alter component code, a characteristic open innovation researchers have called 

“actionable transparency” (Colfer & Baldwin, 2010). In this way peer production project users 

perform the sensing and often the adjustment work needed to deal with both exogenous and 

ecosystem context changes.  The openness and ability to make changes to other people’s code 

creates the possibility of projects receiving information and partial solutions to changing usage 

contexts and collating them, passing solutions (or challenges) “upstream” to other projects. 
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Finally, the emergence of software distributions, such as Debian, as independent peer production 

projects creates opportunities to manage the complexity of ecosystem context. 

3.3.3 Grant-making 

A third resource allocation system is particularly relevant in science: the provision of 

resources through grants provided by funding agencies, including government agencies and non-

profit foundations. In the US, as one example, these agencies include the NSF, the Department of 

Energy and the National Institutes of Health, as well as foundations such as the Sloan 

Foundation.  

In some sense grant money is akin to investment capital: it is made available with the 

hope of amplified future returns. Unlike venture capital, however, these anticipated returns are 

framed not as financial profit but in terms of achievement of more and better science. To this end 

agencies set aside a portion of their funds aimed at supporting science in general and choose to 

invest them in supporting software work relevant to science. In the words of the NSF’s 

implementation of the CIF21 Cyberinfrastructure vision, “Software is thus an integral enabler of 

computation, experiment and theory … [and] also directly responsible for increased scientific 

productivity and significant enhancement of researchers' capabilities” (NSF, 2012).  

The particular investments made are guided by peer review and result in transfers of 

funds to projects which are converted to software work by providing rewarding opportunities for 

potential participants. This is particularly clear when projects pay directly for software work. Of 

similar importance are opportunities for activities resulting in scientifically valuable reputation, 

such as being among the authors of scientific papers. 

Exactly how peer-review panels aimed at software work, in particular, choose what to 

fund is not well understood, but peer review panels in general emphasize scientific contribution, 

which has traditionally been closely linked to the production of knowledge instantiated in the 

scientific literature (i.e., publications), with an emphasis on both novelty and advancement of 

knowledge in the particular fields of the reviewers. Thus there are tensions between assessing 

what projects are likely to make contributions to, say, computer science and those likely to best 

facilitate science in other fields (e.g., Olson et al., 2008).  This creates a tension between writing 

grants that promise novelty and transformation over needs to fund needed ongoing work. 



  Submission #18373 

   25 

Like peer production and unlike commercial sales, grant-funding is not directly linked to 

user numbers: as user numbers rise, support requirements rise but no additional resources are 

available. Larger user numbers are indeed important to component producing scientific software 

projects but only produce resources indirectly through future grant applications (Batcheller, 

2011).  In essence the project has to make a public-goods argument: the project is worthy of 

ongoing support because it provides a public good that would otherwise not be available, 

benefiting all members of the ecosystem. Projects have to periodically make the case that their 

continued contribution is sufficient to justify taking funds that would otherwise earmarked for 

direct funding of science. In other words, the project must argue that these funds ought to be, in 

effect, taxed at their source and given to the project to function as a service center, so that it can 

reduce the work that its users would otherwise have to do. 

As the diversity of use-contexts rises, grant-funding offers no built-in mechanism to 

moderate the exponential growth of work driven by complex ecosystem contexts.  Unlike 

projects using commercial sales, grant-funded projects do not attempt to control the distribution 

of their software; they do not have the prism of sales to provide insight into user assemblies. Yet 

unlike peer production, grant-funded projects are seeking to make the argument that they reduce 

the work of their users and this complicates attempts to learn about use-contexts through 

openness to outside contributions.  Rather, grant-funded projects must work directly to achieve a 

transfer of understanding about how the components are arranged into assemblies and how each 

of those assemblies is changing over time. These transfers take time, represent significant cost to 

grant-funded projects, and involve considerable interdisciplinary challenges as component 

producers seek to understand cutting edge science across a diverse range of use contexts (e.g., 

Faniel, 2009). 

4 Policy Recommendations 

Our analysis above has identified the management of complexity as key work that needs 

to be accomplished for sustainability in a software ecosystem. We also argued that of the 

available resource attraction systems, grant funding has the weakest mechanisms to suppress, 

reduce, or attract resources able to complete this work.  

Science policy towards the governance of scientific practice is limited in both legitimate 

goals and techniques. For example, the importance of preserving innovative freedom of action in 
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science is paramount, rendering approaches that attempt to control end-users with binding 

detailed directions are unlikely to be considered legitimate. Similarly, attempts to reduce the 

exogenous factors driving work in the scientific ecosystem, the moving scientific frontier and 

novel technologies, are likely to be seen as counter-productive; putting the cart before the horse, 

as it were. 

Nonetheless, two broad approaches are both legitimate and feasible. The first broad 

strategy is to improve the ability of the scientific software ecosystem to manage complexity by 

enhancing the grant making system itself: encouraging insight into end-user software assemblies, 

being welcoming to end-user contributions, and funding domain-specific distributions. The 

second broad strategy is to facilitate the transition of projects to alternative resource attraction 

systems, commercial sales and peer production, as appropriate. 

4.1 Improve insight into scientific assemblies 

A key challenge for policy to address is to enhance the visibility of the use contexts of 

scientific software components. In essence this means understanding how components are 

arranged together to produce scientific results, enabling component producers (and others) to 

sense and rationalize the need for adjustment work at the edges. Visibility of end use contexts 

would also provide the possibility of anticipating changes in surrounding components and 

coordinating with other projects to minimize the need for adjustment work and contain potential 

cascades of reciprocal adjustment. Moreover, insight into usage can shape end-user behavior, 

driving coalescence to components through information cascades (Bikhchandani, Hirshleifer, & 

and Welch, 1992), as scientific end-users perceive what other scientific end-users are using and 

become preferentially more likely to use similar components. Insight into usage can therefore 

provide a lever to realize ecosystem architectures capable of suppressing complexity. 

At present, however, component producers have surprisingly little insight into use, 

especially as it becomes widespread: they may know how many people have downloaded their 

software, (or even who has downloaded it, if they use a required sign up for download) and they 

may be able to search for citations to their software papers (assuming that they have made a clear 

citation request and that it has been followed by users). While these insights may help to 

demonstrate usage and scientific impact (and are indeed used by many projects, albeit 

imperfectly) they do not shed light on the complementary components and their dependencies. 
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While projects may work closely with particular key users (Bietz et al., 2010, 2012) or convene 

domain-wide requirements gathering meetings, these methods are resource intensive and do not 

scale to the broad and deep insight required in situations of ecosystem contexts with high 

diversity of use-contexts. 

Accordingly, science policy should focus on gathering and sharing insight into the 

software assemblies of scientific users. Happily this dovetails with the broad policy goal of 

increasing transparency towards reproducibility (e.g, Stodden et al., 2010). For example, 

contribution to code and data archives are being required at journals and conferences, leveraging 

a key influence point in the scientific world (Ince et al., 2012). Our analysis suggests an 

additional use of code archives: they can be aggregated and mined to understand 

complementarities and links between components, providing insight to component producers. A 

similar source of software assembly insight is available when scientific computing occurs in a 

cloud or distributed context, for example when projects access supercomputing resources. 

Supercomputing centers have focused on measuring utilization of their computational resources, 

but not on gathering insight into the code running inside jobs. Nonetheless recent work has 

begun to record the use of libraries on remote scientific platforms, focused on optimizing 

utilization by ensuring that users are employing the best libraries (e.g., McLay & Cazes, 2012). 

Similarly, scientific gateways to which workflows (or, better yet, assemblies) are uploaded to be 

run or shared would be useful sources of data on software assemblies (e.g., Goecks, Nekrutenko, 

Taylor, & The Galaxy Team, 2010; Roure et al., 2009; Stodden, Hurlin, & Perignon, 2012). 

Focusing on obtaining insight into use contexts, rather than the hosting of reusable 

workflows or components, suggests alternative design emphases for these systems. For example, 

research would be needed to produce the most useful approaches (and therefore likely to be used 

by scientists) to creating such archives. Candidates include enhancements specifically aimed 

towards improving ecosystem insight, such as a step in the upload where components used are 

automatically detected and a selection interface presented to ask uploading users to confirm 

recognition of packages. A key issue here is to understand the legitimate privacy or competitive 

concerns of scientists and how to alleviate them, such as through trusted repositories, 

anonymization or sufficient aggregation.  

Systems that actually enhance the existing workflows of scientists, rather than attempt 

wholesale changes in practice, might be more successful. One possibility would be analyzing the 
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uploaded assemblies to help scientists identify which articles ought to be cited. Science policy-

makers should encourage the creation of collections of software assembles and should fund 

research into mining collections of scientific software assemblies to explore appropriate 

techniques to identify sources of adjustment work, hidden complementarities and to best notify 

component producing projects.  

A second approach to improving insight would be to incentivize funded projects to accept 

and cultivate contributions from end-users. As discussed above, peer production gains insight 

into use-contexts as users push their adjustments "upstream." Science policy-markers should 

make it clear that facilitating outside contributions (by those not supported by the project’s grant) 

is appropriate and necessary for grant funded projects, and that having outside contributors does 

not mean that the project is having others do the work that the project was funded to do. Finally, 

policy-makers should make it clear that having outsiders contribute does not imply that projects 

are less in need of ongoing support. Actions in this area can be as simple as asking funded 

projects to report on their efforts to attract outside contributors and highlighting success in 

creating contributing communities to peer-review panels as a positive towards continued or 

renewed funding. Establishing an online presence likely to encourage external contributions is an 

appropriate subject for project education, drawing on techniques from open source peer 

production where the goal is to establish "actionable transparency" (Colfer & Baldwin, 2010); 

the perception that outsiders can and should contribute. 

A third approach is for science funders to incentivize synchronization work and the 

emergence of layered architectures capable of suppressing the need for synchronization work. 

While science policy-makers are limited in the directive power and legitimacy needed to enforce 

standardization in a top-down manner, insight can be drawn from the open source peer 

production world and encourage the emergence of distributions of software components.  

Distributions not only assist end-users by providing components in a form that eases the 

identification and location of dependencies, but they form a natural location for the coordination 

of software adjustments, both in pushing changes "upstream" to the most general component, but 

also in caching adjustments in time and suppressing costly circular cascades of adjustment work. 

Examples of funded distribution work are few and far between. The SBGrid project is a good 

example, focusing on providing coordinated software installs for Structural Biologists (Morin et 

al., 2013). Science policy-makers should issue specific solicitations for work to build domain-
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specific scientific software distributions, bridging between users and component projects and 

emphasize to peer review panels the complexity and importance of this work, both to the 

effectiveness of end-user scientists and to sustainability across the scientific software ecosystem. 

4.2 Transitions between resource attraction systems 

Science policy can encourage grant-funded projects to transition resource attraction 

systems, gaining both ongoing resources and the approaches to managing work derived from 

ecosystem complexity available to these systems.  

Transitions to a model of commercial sales is familiar throughout science policy under 

the name of technology transfer. There are well-known examples of Scientific software that has 

made the transfer, especially in the statistical software space (e.g., SAS), but many.  Efforts in 

this direction include using cloud-hosted services with a "freemium" model of free, broad, 

service provision for science and a paid tier for high and/or commercial users.  Further research 

is necessary to undertaken contingencies to commercial sales as a sustainability approach but it 

seems clear that it is likely to only be successful in situations with high numbers of potential 

users but limited complexity in terms of use-context diversity (reaching a scale at which the price 

mechanism can communicate information about needs for adjustment) or in situations of low 

user numbers but those which have a capacity to pay substantial usage fees. 

Transitions to open source peer production are often promoted as most appropriate for the 

sustainability of scientific software projects (e.g., Gambardella & Hall, 2006). Yet there is little 

understanding of how to build working peer production from grant-funded projects. Certainly 

simply making code available under an open source license is insufficient on its own to build a 

motivated and productive community, as shown by the predominance of individual and stalled 

projects in open source repositories (Krishnamurthy, 2002). Accordingly, science policy aiming 

at successful transitions must go further than requiring release under an open source license, 

which is the policy in place currently within some US federal agencies (e.g., NSF's SDCI and 

SI2 programs). An open source license is necessary but not in any sense sufficient. Transitioning 

from grant funding to open source peer production—or combining these models—implies 

substantial organizational change, including changes in team structure (from local to distributed), 

infrastructure (from controlled to open), governance (from hierarchical to shared), and 

commitment of participants (from predictable to unpredictable). Adding more difficulty still is 
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the simple fact that a transition requires organizational change; it may in fact be far easier to 

achieve successful peer production from scratch than to begin with grant funding and then 

transition. Perhaps unsurprisingly, therefore, there are only a few examples of successful 

transitions from grant funding to sustainable peer production (e.g., Apache Airavata and the 

ENZO project). Therefore science policy makers should fund research on transitions, encourage 

projects which have accomplished successful transitions to share their approaches, and develop 

educational materials on guiding transitions. We need to understand what changes in project 

organization are needed and what actions projects can take to generate the needed changes. This 

knowledge would help peer-review panels assess the quality of a grant applicant's sustainability 

plan and their plans towards transitioning from grants to peer production. 

A variation of this approach would acknowledge that, as in entrepreneurial startups, the 

people best suited to beginning projects are not necessarily the best placed to continue and to 

build community around them. For the reason funding agencies could consider funding 

transitions from grant-funded development to peer production as separate projects, in essence 

seeking to seed "external" participation by funding it more directly, rather than supplying 

additional funds to the original developers. 

5 Conclusion 

We have argued that a primary driver of the challenge of sustainability in scientific 

software is complexity driven by high diversity of use. Sustainability is not a simple matter of 

improving the education of developers in techniques adopted from software engineering or 

commercial software development. Rather, much of the complexity is driven by innovative 

recombination by scientists at the edge of their scientific frontier. Further we have argued that 

scientific grant-making, unlike commercial markets and open source peer production, currently 

lacks mechanisms to address this. We have identified a set of feasible and appropriate 

approaches, including further research, that scientific policy makers could take to shape the 

scientific ecosystem and improve the sustainability of the scientific usefulness of software. 
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