
! 1!

James&Howison’s&contribution&for&Infrastructures&Workshop&Seattle&6;8&

This!is!a!putative!introduction!chapter!and!book!outline!for!a!book!proposal!
to!Paul!Edwards’!Infrastructure!series.!Much!of!the!material!comes!from!the!
working!paper!that!follows.!I!would!appreciate!all!comments!and!questions,!but!
most!appreciate!input!about!a)!tone!for!a!book,!b)!moving!this!to!a!compelling!book!
proposal!(which!I’ve!never!done!before)!and!c)!moving!material!from!the!working!
paper!into!the!book!structure.!The!working!paper!is!long,!so!if!pushed!for!time!I!
recommend!reading!part!1!(which!is!basically!empirical,!pages!4E9)!and!the!
discussion!around!Figure!3!on!ecosystem!architectures!(on!page!17).!

Science&and&Software:&an&introduction&

Science!depends!on!software.!!From!configuration!and!control!of!
instruments,!to!statistical!analysis,!simulation!and!visualization,!virtually!every!
workflow!that!generates!scientific!results!involves!software.!!Recent!research!
suggests!that!scientists!may!be!spending!up!to!30%!of!their!time!developing!
software!and!40%!of!their!time!using!software.1!Indeed,!in!many!fields!there!is!no!
scientific!data!without!simulation!models!realized!in!software.2!

Visions!of!the!future!of!science,!such!as!the!Atkin’s!Report!and!the!NSFs!
CIF21!vision3,!frame!software!as!much!more!than!a!supporting!service:!it!can!be!a!
source!of!innovation!and!can!enhance!science!by!increasing!its!transparency,!
reproducibility,!correctness,!transferability!and!scale.4!In!particular!the!vision!holds!
that!the!properties!of!software!as!a!digital!artifact,!its!low!marginal!cost!of!
reproduction!and!high!potential!for!reEuse!and!recombination,!offers!the!potential!
for!relatively!small!initial!investments!that!can!lead!to!increasing!reEuse!and!

!!
1!J.E.!Hannay!et!al.,!“How!Do!Scientists!Develop!and!Use!Scientific!Software?,”!

in!Proceedings+of+the+2009+ICSE+Workshop+on+Software+Engineering+for+
Computational+Science+and+Engineering,!2009,!E8.!

2!Paul!N!Edwards,!A+Vast+Machine+Computer+Models,+Climate+Data,+and+the+
Politics+of+Global+Warming!(Cambridge,!Mass.:!MIT!Press,!2010),!
http://site.ebrary.com/id/10424687.!

3!Daniel!Atkins,!“Report!of!the!National!Science!Foundation!BlueERibbon!
Advisory!Panel!on!Cyberinfrastructure,”!2003,!
http://www.nsf.gov/od/oci/reports/toc.jsp;!NSF,!“A!Vision!and!Strategy!for!
Software!for!Science,!Engineering,!and!Education:!Cyberinfrastructure!Framework!
for!the!21st!Century!(CIF21),”!Dear!Colleague!Letter!(The!US!National!Science!
Foundation,!2012),!http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.htm.!

4!Victoria!Stodden!et!al.,!“Reproducible!Research,”!Computing+in+Science+and+
Engineering,!2010;!Darrel!C.!Ince,!Leslie!Hatton,!and!John!GrahamECumming,!“The!
Case!for!Open!Computer!Programs,”!Nature!482,!no.!7386!(February!22,!2012):!
485–88,!doi:10.1038/nature10836.!

! 2!

coalescence!into!widely!used!software!platforms,!resulting!in!widespread,!longE
lived,!impact!in!the!form!of!better!science.!

Yet,!as!in!other!areas!of!human!endeavor,!software!can!also!become!a!
problem,!consuming!time!and!resources!from!science,!with!duplicated!work,!poor!
quality!results!and!weak!reproducibility.5!!Indeed!questions!about!the!quality!of!
software,!and!software!work,!in!science!were!at!the!heart!of!recent!debates!about!
the!reliability!of!scientific!results!for!public!policy!precipitated!by!the!soEcalled!
“Climategate”!incident.6!The!potential!contribution!of!software!in!science!is!thus!
undermined,!resulting!in!practices!that!obscure!rather!than!reveal!the!underlying!
science!and!expensive,!frustrating,!churn!as!packages!are!written!and!discarded.!

How!then!do!we!come!to!have!the!software!we!build!and!use!in!science?!How!
might!we!have!software,!and!software!work,!with!different!characteristics?!This!
book!takes!a!systematic!view!of!the!production!and!use!of!software!written!
specifically!for!scientists.!We!seek!understanding!that!helps!us!speak!about!how!the!
overall!practices!might!be!improved,!towards!better!science.!

The&themes&of&this&book&

Governance)of)emergent)infrastructures)

Understanding!the!dynamics!of!a!topic!like!scientific!software!is!difficult,!but!
of!increasing!importance.!Even!speaking!of!some!collective!scientific!software!
phenomenon!is!to!employ!a!concept!firmly!at!an!uncomfortable!level!of!analysis:!to!
grasp!the!phenomenon!sufficiently!to!have!any!chance!of!influencing!it!we!need!to!
grapple!with!activity!that!is!both!inside!and!outside!organizations!and!inside!and!
outside!particular!knowledge!cultures.7!Scientific!software!is!an!emergent!
phenomenon,!without!overarching!institutions!of!governance!or!even!the!collective!
acknowledgment!of!being!an!interdependent!system!that!undergirds!legitimate!
efforts!at!governance.!In!this!way!the!scientific!software!ecosystem!is!akin!to!an!
industry!or!a!subEculture!far!more!than!it!is!akin!to!the!potentially!manageable!IT!
function!of!an!organization!or!a!government.!Even!in!the!loosely!governed!domain!

!!
5!Ince,!Hatton,!and!GrahamECumming,!“The!Case!for!Open!Computer!

Programs”;!Paul!F.!Dubois,!“Maintaining!Correctness!in!Scientific!Programs,”!
Computing+in+Science+and+Engg.!7,!no.!3!(2005):!IEEE!Educational!Activities!
Department!–!85;!Alfonso!Gambardella!and!Bronwyn!H.!Hall,!“Proprietary!versus!
Public!Domain!Licensing!of!Software!and!Research!Products,”!Research+Policy!35,!no.!
6!(2006):!E892,!doi:doi:!DOI:!10.1016/j.respol.2006.04.004;!B.!D.!McCullough,!Kerry!
Anne!McGeary,!and!Teresa!D.!Harrison,!“Lessons!from!the!JMCB!Archive,”!Journal+of+
Money,+Credit,+and+Banking!38,!no.!4!(2006):!1093–1107.!

6!Dave!S!Reay,!“Lessons!from!Climategate,”!Nature!467,!no.!7312!(2010):!
157–157;!Marianne!Ryghaug!and!Tomas!Moe!Skjølsvold,!“The!Global!Warming!of!
Climate!Science:!Climategate!and!the!Construction!of!Scientific!Facts,”!International+
Studies+in+the+Philosophy+of+Science!24,!no.!3!(2010):!287–307.!

7!Karin!KnorrECetina,!Epistemic+Communities!(Cambridge,!MA:!Harvard!
Education!Press,!1999).!

! 3!

of!science,!we!will!see!that!software!work!sits!uncomfortably,!in!the!sense!that!
scientists,!and!the!institutions!of!science!(journals,!professional!societies,!funding!
agencies,!universities,!national!science!policy!organizations),!are!unsure!the!extent!
to!which!software,!and!work!on!software,!fall!under!the!activities!about!which!
Science!holds!legitimate!power.!Software!and!software!work!fall!into!the!
background;!they!are!not!the!activity!of!primary!activity!(not!research!or!even!
method),!but!a!secondary!activity,!an!infrastructural!activity!(at!best).!Certainly!
scientists!and!scientific!institutions!are!unsure!how!and!when!to!wield!any!influence!
they!might!have.!

In!that!sense!this!book!is!about!the!governability!of!emergent!infrastructures,!
seeking!insight!into!whether!and!how!unruly,!separate,!secondary,!activity!might!
come!to!be!understood!as!a!system.!More,!though,!the!ambition!to!usefully!influence!
the!system!raises!questions!of!whether!and!how!participants!(people,!institutions,!
even!technologies)!might!grasp!that!systemness!and!decide!how!to!attempt!to!
govern,!or!at!least!influence,!it.!

Reproducibility)and)Sustainability)

There!are!two!core!concepts!around!which!discussions!about!software!in!
science!have!come!to!turn:!reproducibility!and!sustainability.!Each!comes!from!a!
different!direction!and!emphasizes!the!concerns!of!different!stakeholders,!but!in!the!
end!share!a!set!of!concerns.!

The!discourse!on!reproducibility!is!driven!from!the!bottom!up!by!those!
interested!in!how!science!at!the!coalface!is!done,!in!reading!and!learning!from!
scientific!publications,!and!in!building!on!the!work!of!other!scientists.!They!ask,!how!
do!we!know!what!was!actually!done,!how!can!we!check!and!confirm!its!correctness!
and!implications,!and!how!can!we!extend!the!work?!They!point!out!that!descriptions!
in!papers!are!almost!always!insufficient!for!replication!by!others.!Yet!the!software!
itself!is!often!not!available,!is!very!infrequently!subject!to!peer!review;!when!it!is!
available!it!is!poorly!documented!and!hard!to!use.!Thus!software!makes!science!less!
transparent!and!makes!the!job!of!other!scientists!more!difficult!than!it!needs!to!be.!!

On!the!other!hand,!those!focused!on!reproducibility!emphasize!that!software!
could!make!science!far!more!transparent,!providing!the!full!set!of!operations!
together!with!data!as!workflows,!ultimately!resulting!in!“executable!papers”!or!
endorsements!of!reproducibility!and!extensive!peer!review!in!journals.8!An!activist!
community!has!emerged,!drawing!on!Mertonian!ideals!of!scientific!openness,!to!
implore!scientists!to!change!their!ways.!They!dangle!the!carrot!of!collectively!better!
science,!while!wielding!the!stick!of!shame!(albeit!lightly)!by!accusing!others!of!
carelessly!violating!norms!of!science.!

!!
8!Rudolf!Strijkers!et!al.,!“Toward!Executable!Scientific!Publications,”!Procedia+

Computer+Science,!Proceedings!of!the!International!Conference!on!Computational!
Science,!ICCS!2011,!4!(2011):!707–15,!doi:10.1016/j.procs.2011.04.074;!Ince,!
Hatton,!and!GrahamECumming,!“The!Case!for!Open!Computer!Programs”;!Stodden!et!
al.,!“Reproducible!Research.”!

! 4!

The!discourse!on!sustainability,!in!contrast,!is!driven!“topEdown,”!primarily!
by!science!funding!agencies.!Sustainability!here!refers!not!to!the!preservation!of!the!
natural!environment,!but!to!the!longEterm!future!of!software!built!for!scientists.!As!
one!workshop!participant!tweeted,!sustainability!is!about!“what!happens!when!the!
grant!runs!out.”9!Funders!perceive!substantial!sums!being!spent!on!software!for!the!
use!of!scientists!that!both!fails!to!achieve!widespread!use!and,!most!importantly,!
returns!time!and!again!for!ongoing!funding!devoted!to!maintenance!rather!than!new!
innovations.!The!logic!of!science!funding!is!primarily!oriented!to!discovery,!hoping!
to!fund!the!initial!burst!of!innovation!that!others!(usually!commercial!industry)!will!
pick!up!and!sustain.!Funding!agencies,!particularly!in!the!US,!struggle!with!the!idea!
of!truly!infrastructural!spending,!of!a!“long!now”10!of!continued!spending!on!
background,!secondary,!activity!most!vulnerable!to!accusations!of!waste!and!
duplication.!

The!discourses!of!reproducibility!and!sustainability!both!reflect!the!
perception!that!software!in!science!is!not!acting!as!it!should.!In!particular!it!does!not!
seem!to!follow!the!route!towards!reEuse,!coalescence,!and!interEoperability!seen!to!
occur!outside!science,!driving!the!creation!of!“software!platforms”!that!undergird!
collective!innovation.!Rather!the!perception!is!of!multiple!false!starts:!visions,!
enthusiasm,!and!potential!tapering!off,!leaving!creaky,!isolated,!opaque,!artifacts!in!
danger!of!being!abandoned,!or!maintained!only!through!hard,!costly,!but!ultimately!
deadEend,!effort11.!

In!this!book!I!hope!to!disentangle!what!is!driving!both!of!these!discourses,!
uniting!them!to!state!the!overall!challenges!and!outline!possibilities!for!
improvement.!I!also!hope!to!link!what!is!happening!in!science!with!what!is!
happening!in!the!broader!software!industry!and!beyond.!Beyond!these!largely!
applied!interests,!I!also!hope!to!connect!with!two!conceptual!themes!in!the!broader!
analysis!of!socioEtechnical!questions:!the!impact!of!digital!products!and!the!duality!
of!technology!as!artifact!and!practice.!

!!
9!Daniel!S.!Katz!et!al.,!“Summary!of!the!First!Workshop!on!Sustainable!

Software!for!Science:!Practice!and!Experiences!(WSSSPE1),”!Journal+of+Open+
Research+Software!2,!no.!1!(July!9,!2014),!doi:10.5334/jors.an.!

10!Geoffrey!C.!Bowker!et!al.,!“The!Long!Now!of!Cyberinfrastructure,”!in!World+
Wide+Research:+Reshaping+the+Sciences+and+Humanities!(Cambridge,!MA:!MIT!Press,!
2010).!

11!Editorial!note:!((One!key!question!is!whether!this!perception!is!justified,!or!
whether!it!reflects!a!misunderstanding!of!the!extent!of!“failed”!effort!in!the!
evolution!of!software!outside!science.!!Why!does!science!think!it!can/ought!to!do!
this!better?!Is!it!a!combination!of!“our!culture!is!one!of!openness!and!sharing,!we!
should!be!better!than!the!inefficiencies!of!the!market”!meeting!the!“hey,!ultimately!
the!government!is!paying!for!much!of!this!(or!at!least!software!is!a!tax!on!‘real!
science’),!we!should!be!efficient!in!how!we!spend!this!money”.))!

! 5!

Two)possibilities)of)digital)products:)re;use)and)recombination)

When!something!is!digital!we!can!do!different!things!with!it.!Anyone!that!
lived!through!Napster!(or!Youtube)!instantly!knows!the!far!from!unproblematic!
possibilities:!digital!products!make!it!possible!to!reproduce!copies!at!close!to!zero!
marginal!costs,!opening!up!the!possibility!that!once!something!is!produced!it!can!be!
available!for!everyone,!everywhere,!to!use!or!enjoy.!!

A!second!possibility!builds!on!reuse:!digital!things!can!be!reEcombined.!
Rather!than!simply!reusing!exact!copies!of!the!original,!recombination!facilitates!
extension!and!innovation12.!Again!music!shows!the!way:!from!sampling!to!mashE
ups,!music!can!be!pulled!part,!broken!down,!and!the!parts!recombined!by!others!to!
make!something!new.!The!ability!to!break!up!systems!and!recombine!their!
components!gives!rise!to!“option!value,”!epitomized!originally!by!IBM’s!decision!to!
allow!outsiders!to!improve!components!of!their!computer!system13!and!more!
recently!by!the!outcome!of!Apple’s!(eventual)!decision!to!allow!developers!direct!
access!to!a!software!platform!for!the!iPhone!and!the!resulting!cornucopia!of!Apps.!
The!original!developer!doesn’t!have!to!perceive!all!possibilities!of!value!in!advance,!
just!manage!processes!of!“coring”!and!“tipping”14!to!provide!a!sustained!platform!
for!others!to!bring!their!insights!and!resources!to!bear,!providing!an!“innovation!
engine”!for!others!to!drive.15!

Of!course!such!possibilities!are!far!from!unproblematic:!these!possibilities!
threaten!established!interests!and!resourcing!models.!We!have!witnessed!the!take!
down!of!peerEtoEpeer!fileEsharing!like!Napster!and!Pirate!Bay,!the!constant!toEandE
fro!of!DCMA!takedown!notices!on!services!like!Youtube!and!efforts!to!bolster!
property!rights!in!digital!content!in!trade!agreements!like!the!Trans!Pacific!
Partnership.!Battles!have!been!fought!over!encryption!used!for!“digital!rights!
management”!and!“trusted!computing.”!Sampling!has!moved!from!the!underground!

!!
12!Youngjin!Yoo!et!al.,!“Organizing!for!Innovation!in!the!Digitized!World,”!

Organization+Science!23,!no.!5!(September!1,!2012):!1398–1408,!
doi:10.1287/orsc.1120.0771;!Sendil!K.!Ethiraj!and!Daniel!Levinthal,!“Modularity!
and!Innovation!in!Complex!Systems,”!Management+Science!50,!no.!2!(February!1,!
2004):!159–73;!Joseph!Alois!Schumpeter,!The+Theory+of+Economic+Development:+An+
Inquiry+Into+Profits,+Capital,+Credit,+Interest,+and+the+Business+Cycle!(Transaction!
Publishers,!1934);!U.!Zander!and!B.!Kogut,!“Knowledge!and!the!Speed!of!the!
Transfer!and!Imitation!of!Organizational!Capabilities:!An!Empirical!Test,”!
Organization+Science!6!(1995):!E92.!

13!Carliss!Y.!Baldwin!and!Kim!B.!Clark,!Design+Rules:+The+Power+of+Modularity!
(Cambridge,!MA:!Harvard!Business!School!Press,!2000).!

14!A.!Gawer!and!Michael!A.!Cusumano,!“How!Companies!Become!Platform!
Leaders,”!MIT+Sloan+Management+Review!49,!no.!28!(2008);!Kevin!Boudreau,!“Open!
Platform!Strategies!and!Innovation:!Granting!Access!vs.!Devolving!Control,”!
Management+Science!56,!no.!10!(2010):!1872.!

15!David!S.!Evans,!Andrei!Hagiu,!and!Richard!Schmalensee,!Invisible+Engines:+
How+Software+Platforms+Drive+Innovation+and+Transform+Industries!(The!MIT!Press,!
2006).!

! 6!

into!the!battleground,!pitting!producers!against!copyright!holders!and!other!artists.!
Musicians!themselves,!unsurprisingly,!grasped!these!conflicts!very!early,!including!
the!Grateful!Dead!lyricist!John!Perry!Barlow’s!“Selling!wine!without!Bottles!on!the!
Global!Net”!in!1992.16!There!is!money!to!be!made!in!controlling!distribution,!
regardless!of!how!much!was!ever!actually!reinvested!in!music!production!ore!
returned!to!artists,!and!the!full!forces!of!law,!technology,!and!culture!continue!to!
clash!over!the!reverberations!of!the!digital.!

In!science,!though,!the!consideration!of!the!digital!when!it!comes!to!software!
has!almost!all!been!on!the!benefits!of!reuse!and!recombination,!with!little!
consideration!or!even!controversy!focusing!on!the!downsides17.!The!emphasis!in!
science!on!the!benefits!of!reuse!makes!sense!because!the!downsides!and!
controversy!so!clear!in!the!commercial!world!are!not!salient!in!science.!This!is!
because!very!little!of!the!software!produced!directly!for!scientists!is!resourced!by!
direct!sales18,!so!there!is!no!need!or!benefit!in!controlling!access!to!the!product.!
Rather,!work!is!funded!through!grants:!upfront!payments!designed!to!pay!the!initial!
costs!of!production!with!the!expectation!that!the!very!low!marginal!costs!of!
reproduction!will!lead!to!widespread!reuse.!In!essence!this!is!a!public!goods!
argument:!we!“tax”!science!funding!once!to!pay!for!production!and!everyone!gets!
access!to!the!goods.19!

The!second!possibility!of!digital!products,!recombination,!also!seems!ideal!
for!science.!After!all,!science!proceeds!in!opening!up!unknown!and!very!hard!to!
predict!frontiers;!the!option!value!of!recombination!is!ideal!in!this!situation.!And!
indeed,!the!flexibility!of!digital!products!facilitates!linking!them!together,!opening!
up!components!of!analyses!or!datasets!for!recombination!into!many!different!
workflows.!Examples!abound:!addition!of!phylogenetics!to!BLAST!database!lookups;!
migration!of!sequence!analysis!techniques!from!biology!to!organizational!science.!

Of!course!there!are!downsides!of!the!possibilities!of!digital!goods!in!science!
as!well.!!While!science!holds!a!value!of!openness,!scientists!still!invest!time,!money,!
and!reputation!in!their!work.!Whether!this!be!in!investing!to!create!a!dataset!that!
they!hope!to!base!many!analyses!on,!collecting!samples!from!the!field!that!will!
support!many!years!of!work,!or!building!software!that!instantiates!an!analysis!with!
broad!application!potential.!Analogously!to!music,!then,!free!and!complete!
availability!raises!questions!about!whether!scientists!can!reasonably!expect!to!
access!the!latent!possibilities!of!their!investments,!or!whether!openness!will!result!

!!
16!John!Perry!Barlow,!“The!Economy!of!Ideas:!Selling!Wine!Without!Bottles!

on!the!Global!Net.,”!1992,!https://homes.eff.org/~barlow/EconomyOfIdeas.html.!
17!Editorial!note:!This!ignores!debates!over!ownership!of!genomes!and!

struggles!over!the!IP!for!mouse!lines!etc.!It!ignores!the!whole!BayeEDole!struggle!to!
control!intellectual!property!(which,!honestly,!has!barely!touched!software).!

18!I!Editorial!note:!gnoring!SAS,!expensive!genetics!software,!lab!management!
systems!etc.!Even!my!software!citation!study!shows!at!least!35%!of!the!software!
mentioned!is!commercial,!although!that!includes!far!too!much!general!purpose!
software.!

19!Nathan!Bos,!Motivation+to+Contribute+to+Collaboratories:+A+Public+Goods+
Approach,!ed.!Gary!M.!Olson,!Nathan!Bos,!and!Ann!Zimmerman,!2008.!

! 7!

in!unfair!competition!(scooped!with!one’s!own!data)!and!ultimately!deter!valuable!
investment,!resulting!in!even!more!pressure!towards!work!of!the!“least!publishable!
unit.”!In!some!areas!of!science,!especially!highEenergy!physics,!these!questions!are!
increasing!approached!by!the!creation!of!consortia,!epitomized!by!the!two!consortia!
organized!around!the!Large!Hadron!Collider.!These!consortia!have!“memoranda!of!
understanding”!(MoUs)!that!govern!preferential!access!to!full,!minimally!processed,!
data!or!analysis!software!created!by!consortia!members!(at!least!in!the!short!to!
medium!term).!

In!this!book,!though,!I!will!make!an!extended!argument!about!the!downsides!
of!the!possibility!of!recombination!of!software!and!discuss!why!the!downsides!are!
both!worse,!more!invisible,!and!harder!to!manage!in!science.!In!essence!the!
argument!is!this:!over!time!recombination!and!extension!creates!complex!networks!
of!dependency,!leading!to!a!great!deal!of!work!in!managing!change!(of!systems,!
techniques,!and!software).!Unlike!with!music,!as!software!is!recombined!a!great!deal!
of!effort!is!involved!in!simply!keeping!things!working!together!as!updates!and!
changes!spread!unevenly!through!dependency!networks.!Understanding!and!
shaping!the!overall!patterns!of!dependency!(the!“ecosystem!architecture”!of!a!
“software!platform”)!is!key!to!accessing!the!benefits!of!recombination.!Yet!Science,!
unlike!both!the!commercial!software!industry!and!generalEpurpose!open!source!
software!distributions,!has!very!little!leverage!to!manage!and!shape!patterns!of!reE
use!and!recombination.!The!challenge!is!worse,!is!far!more!hidden,!and!there!are!
fewer!ways!to!address!it;!we!conclude!the!book!with!policy!suggestions.!

The)dual)nature)of)software:)artifact)and)practice)

A!second!overarching!theme!of!this!book!is!addressing!the!implications!of!a!
category!error:!far!too!often!we!address!software!as!(just)!an!artifact,!forgetting!that!
it!is!also!useful!to!think!of!it!as!a!practice.!Software!is,!of!course,!both;!one!might!say!
it!has!a!dual!nature.!The!artifact!nature!of!software!is!most!visible!and!easiest!to!
deal!with.!Most!of!the!policy!reasoning!above!starts!with!the!artifact,!as!a!digital!
object!capable!of!both!reuse!and!recombination.!

Yet!of!course!the!software!artifact!is!the!result!of!software!practice!and!it!is!
imbued!with!characteristics!as!a!result!(cite!Marx?).!The!software!artifact!is!also!the!
site!of!practice;!the!artifact!is!worked!with!and!worked!on.!It!is,!of!course,!just!this!
sort!of!work!that!has!a!tendency!to!become!invisible!in!infrastructures.20!More,!as!
we!will!see,!even!the!work!dealing!with!breakdowns!tends!to!invisibility!(at!least!in!
publications!and!policy),!as!it!is!distributed!among!users,!undertaken!by!technicians!
and!graduate!students.!Within!the!rapidly!changing!context!in!which!software!in!

!!
20!Susan!Leigh!Star!and!Karen!Ruhleder,!“Steps!Toward!an!Ecology!of!

Infrastructure:!Design!and!Access!for!Large!Information!Spaces,”!Information+
Systems+Research!7,!no.!1!(March!1,!1996):!111–34,!doi:10.1287/isre.7.1.111;!
Charlotte!P.!Lee,!Paul!Dourish,!and!Gloria!Mark,!“The!Human!Infrastructure!of!
Cyberinfrastructure,”!in!Proceedings+of+the+2006+20th+Anniversary+Conference+on+
Computer+Supported+Cooperative+Work,!CSCW!’06!(New!York,!NY,!USA:!ACM,!2006),!
483–92,!doi:10.1145/1180875.1180950.!

! 8!

science!exists,!the!value!of!any!particular!version!or!configuration!of!software!is!
relatively!small!compared!to!the!importance!of!the!work!with!that!code.!!

The!discourse!on!“open!data”!in!science!parallels!the!situation!in!software:!
the!emphasis!has!been!on!the!data!as!an!object,!but!research!increasingly!points!to!
the!importance!of!the!practices!that!surround!the!data,!both!in!its!production,!its!
use,!and!its!long!term!storage.!21!The!same!reasoning!on!reEuse!and!recombination!
drives!the!policy!debate!(“public!money,!public!data”);!these!discussions!make!the!
most!sense!if!one!assumes!that!the!data!can!be!freed!from!the!practices!that!
surround!it.!Efforts!abound!attempting!to!solidify!the!history!of!the!collection!and!
processing!of!data!into!its!own!artifact,!the!metadata!record.!Researchers,!though,!
seeking!to!understand!friction!on!the!path!towards!more!open!data,!highlight!
investment!in!data,!practices!of!valuing!data,!and!the!work!needed!to!understand!
and!use!the!data!effectively.22!

Grasping!the!policy!challenges!and!policy!options!requires!peering!past!the!
artifact!and!into!the!practices!surrounding!it.!These!practices—this!work—more!
than!just!the!artifacts!themselves,!are!the!focus!of!this!book.!!

The&structure&of&the&argument&

The!book!is!divided!into!three!parts.!The!first!draws!on!empirical!work!to!
describe!and!analyze!the!work!that!scientists!do!with!software,!both!in!producing!it!
and!in!using!it!within!their!science.!I!draw!heavily!on!my!research!with!Jim!
Herbsleb,!but!also!on!the!studies!of!the!relatively!small!number!of!scholars!who!
have!studied!software!work!in!science.!I!seek!to!convey!an!understanding!of!how!
software!is!produced!and!used.!Then!I!draw!on!that!to!analyze!how!and!why!
software!becomes!less!useful!over!time,!introducing!the!concept!of!ecosystem+
context+to!locate!particular!projects.!I!then!turn!to!the!work!of!sustaining!software!
over!time,!developing!a!classification!of!different!kinds!of!work,!breaking!down!the!
category!of!“maintenance”!work!to!highlight!the!distributed!and!often!invisible!work!
that!stems!from!the!complexity!of!the!dependency!structure:!sensing,!adjustment,!
and!synchronization.!These!types!of!work!scale!differently!in!different!ecosystem!

!!
21!Christine!L.!Borgman,!Jillian!C.!Wallis,!and!Matthew!S.!Mayernik,!“Who’s!

Got!the!Data?!Interdependencies!in!Science!and!Technology!Collaborations,”!
Computer+Supported+Cooperative+Work+(CSCW)!21,!no.!6!(August!2012):!485–523,!
doi:10.1007/s10606E012E9169Ez;!Christine!Borgman,!“The!Conundrum!of!Sharing!
Research!Data,”!Journal+of+the+American+Society+for+Information+…!63,!no.!6!(2012):!
1059–78,!doi:10.1002/asi;!Heather!A.!Piwowar,!Todd!J.!Vision,!and!Michael!C.!
Whitlock,!“Data!Archiving!Is!a!Good!Investment,”!Nature!473,!no.!7347!(May!18,!
2011):!285–285,!doi:10.1038/473285a.!

22!Paul!N.!Edwards!et!al.,!“Knowledge!Infrastructures:!Intellectual!
Frameworks!and!Research!Challenges,”!May!2013,!doi:2027.42/97552;!Christine!L.!
Borgman,!Big+Data,+Little+Data,+No+Data:+Scholarship+in+the+Networked+World!
(Cambridge,!Massachusetts:!The!MIT!Press,!2015).!

! 9!

contexts.!Part!One,!thus,!sets!up!the!challenge!that!longEterm,!sustained!software!
projects!and!the!scientific!software!ecosystem!as!a!whole!must!meet.!

The!second!part!of!the!book!looks!closely!at!the!software!production!side!of!
things,!focusing!especially!on!how!projects!come!to!have!the!resources!needed!to!
undertake!their!work!and!analyzing!how!this!affects!their!ability!to!manage!
ecosystem!complexity.!In!the!commercial!world!one!would!call!this!their!“business!
model,”!but!commercial!business!is!only!one!of!three!broad!resource+attraction!
systems!for!software:!open!source!peer!production!and!scientific!grantEmaking!are!
the!other!two!I!analyze.!Each!resource!attraction!system!provides!different!
capabilities!for!addressing!the!work!needed!for!longEterm!sustainability.!For!
example,!the!commercial!sales!process!provides!crystal!clear!counts!of!the!number!
of!users,!but!as!important!as!that!crude!measure!of!impact!is!to!scientific!grant!
using,!the!grants!process!provides!no!“builtEin”!record!of!software!use.!

Of!particular!importance!are!the!institutional!capabilities!that!each!resource!
attraction!system!offers!for!managing!the!complexity!that!results!from!
recombination!and!networks!of!software!dependency.!I!describe!ideal!forms!of!
ecosystem!architectures!that!shape!activity!in!ways!that!allow!perception!and!
management!of!dependency:!the!hourglass!and!the!proper!hierarchy.!I!highlight!the!
manner!in!which!control!or!influence!over!endEuser!developers,!through!both!
incentives!and!technological!structures,!is!key!to!establishing!and!maintaining!these!
ecosystem!architectures.!Finally!I!discuss!how!scientific!grantEmaking,!and!the!
wider!context!of!software!work!in!science,!undermine!the!ability!to!perceive,!let!
alone!shape!activity!towards,!ecosystem!architectures!that!manage!the!complexity!
that!results!from!recombination.!

Part!three!turns!to!implications.!I!outline!and!analyze!efforts!to!improve!the!
situation!for!scientific!software,!highlighting!those!that!could!give!leverage!to!
science!for!increasing!the!visibility!of!software!work!and!managing!ecosystem!
complexity.!I!then!return!to!the!intellectual!themes!of!the!book,!discussing!the!
usefulness!of!grasping!the!artifact/practice!nature!of!work!and!calling!for!a!new!
intellectual!emphasis!on!understanding!and!influencing!recombination.!
!

Tentative(outline(
(
Introduction:+
The(policy(challenge((why(is(sustainability(of(scientific(software(an(issue?(Why(does(
software(in(science(have(difficulty(developing(into(an(infrastructure/platform?(How(
does(this(compare(to(software(outside(science?(Why(is(this(harder(in(science(than(
outside?)(
(
Two(possibilities(of(digital(goods:(re?usability(and(re?combinability.((Argument(
essentially(is(that(each(aspect(has(opportunities(for(novel(action,(but(also(difficulties(
that(require(policy(responses.((E.g.,(reuse(offers(music(anywhere,(anytime(but(
sampling(is(a(type(of(reuse(that(challenges(policy(response.(In(science,(emphasis(has(
only(been(on(the(benefits(of(recombination,(not(the(difficulties(it(brings.(
(
Overarching(theme:(artifact(lens(vs(practice(lens.((Software((and(many(other(things)(
has(a(dual(nature:(it(is(both(an(artifact(and(a(practice.((The(artifact(nature(of(software(
is(most(visible,(but(leads(to(misunderstandings.(As(a(practice,(especially(an(
infrastructural(practice,(software(work(disappears((is(rendered(invisible),(especially(
when(considered(at(an(ecosystem(level;(yet(understanding(software(as(a(practice(is(
key.(
(
Part+1:+Elements+of+the+challenge+
!
Chapter!1.1:!!How!is!scientific!software!used?!
Drawing(on(2011(CSCW(paper.((Examine(set(of(software(in(three(key(publications.((
Show(nature(of(the(software(assemblies.(Each(component(is(used,(but(produced(
somewhere(differently,(pulled(together((along(with(plenty(of(actual(work).(
Overall(chapter(goal(is(to(illustrate(ecosystem(nature,(along(with(“burstiness”(of(
scientific(work(with(software((long(gaps(between(attempted(use).(
(
Chapter!1.2:!Why!does!software!become!less!useful!over!time?!
Over(time,(software(declines(in(scientific(usefulness,(driven(by(four(factors:(a(
moving(scientific(frontier(and(technological(change,(production(friction,(use(friction,(
and(the(software(ecosystem(context.(In(particular(we(highlight(the(impact(of(the(
complexity(of(ecosystem(context,(in(terms(of(the(diversity(of(use?contexts(in(which(a(
component(is(used.((
(
Chapter!1.3:!What!is!the!work!of!sustaining!software!over!time?!
(fleshing(out(the(concept(of(software(as(practice)(
To(understanding(of(work(in(software((requirements,(develop,(integrate,(release,(
maintain)(we(add:(sensing,(adjustment,(synchronization.((Sensing(is(knowing(how(
software(is(being(used(in(combination(with(other(components,(adjustment(is(making(
changes(in(response(to(changes(in(the(ecosystem.((Synchronization(is(getting(the(
timing(of(adjustments(right(to(damp(recursive(complexity.((draws(on(Bietz/Lee’s(
work)(
(

Chapter!1.4:!Three!approaches!to!sustaining!usefulness!!
We(identify(three(broad(strategies(to(address(the(need(for(work(to(sustain(the(
usefulness(of(scientific(software:(1)(suppress(the(drivers,(2)(reduce(the(amount(of(
work(needed,(or(attract(sufficient(resources(able(to(undertake(the(work(needed(to(
sustain(scientific(usefulness.(
(
The(first((suppression)(is(counter?cultural(to(science,(although(broadly(pursued(in(
industry(and(general(open(source((through(ecosystem(architectures).((The(second(
(focus(of(empirical(software(engineering(field)(is(important(but(limited.(The(third(
(attract(resources)(is(vital(but(shapes(artifact(ecosystems(in(important(ways,(
including(reducing(the(usefulness(of(architectures(of(recombination.(That(is(the(
subject(of(the(next(Part.(
(
Part+2:+Resource+attraction+systems+
(
The(manner(in(which(projects(obtain(resources(affects(their(ability(to(manage(or(
suppress(the(complexity(resulting(from(the(recombination(of(software.(In(particular(
they(affect(the(ability(to(do(so(by(constructing(particular(architectures(of(
recombination.(Particular(architectures(of(recombination(help((or(fail(to(help)(
suppress(and(manage(complexity.(
(
Chapter!2.1:!Commercial!
Sales(and(after(sales(support(provide(insight(into(end?use(recombination,(licensing(
permits(control.((Running(example(here(is(mobile(app(stores((iOS/Android).(
Resulting(architecture(is(hourglass(platform(architecture,(with(insight(through(
application(submission,(and(timed(waves(of(platform(updates.(
(
Chapter!2.2:!Peer!production!
Peer(production(is(the(resource(attraction(scheme(underlying(production(of(
“free/open(source”(software((often(conflated(but(worth(distinguishing).(User(
contact(and(contributions(provide(insight(into(end?use(recombination,(distributions(
provide(structuration(of(end?use(recombination,(driving((incomplete)(community(
coalescence(and(allowing(adjustment(work(to(be(“pushed(upstream”(and(
synchronized(through(releases.((Running(example(here(is(Debian/Ubuntu,(drawing(
on(“release(management”(studies((not(my(studies).((Resulting(architecture(is(
hierarchical(with(timed(waves(of(updating.(
(
Chapter(2.3(Grants(
Grantsmanship/peer(review(requires(promises(of(novelty,(rather(than(maintenance.((
Scientific(reputation(discourages(integration.(Grants(encourage(projects(to(create(
“service(centers”((taking(on(the(work(for(the(community).((Few(sources(of(insight(
into(use((downloads(not(tracked,(unlike(commercial;(no(expectation(of(contributions(
from(the(community,(unlike(open(source).((Citations,(which(should(provide(ideal(
insight,(are(unreliable(for(software(in(science((interview(data,(my(forthcoming(
JASIST(article(on(software(mentions(in(papers).(Resulting(architecture(is(chaotic(
(dense,(non?hierarchical),(little(scope(for(temporal(coordination(in(releases.(

(

Part+3:+Implications+
(

Chapter!3.1:!Implications!for!science!policy!
Focus(on(improving:(visibility(of(use,(synchronization(of(development.((Running(

examples(are(SI2(program,(WSSSPE(workshops,(and(the(UK(Software(Sustainability(

Institute((Interviews(with(Dan(Katz(at(NSF,(Neil(at(UK(software(sustainability(

institute?).(Challenges(are(1)(reputation(as(prime(motivator(in(science,(2)(“privacy”(

cutting(against(insight(into(infrastructures.(Transitions(to(peer(production(desirable(

(but(substantial(differences(and(not(always(feasible).(

(

Chapter!3.2:!Implications!for!infrastructure!studies!
Making(invisible(work(usefully(visible((both(to(know(how(to(manage/shape(and(to(

incentivize(the(“right”(things).(Software(ecosystems(are(not(unmanageable;(but(they(

are(complex,(insight(into(use(is(key.((Using(an(approach(of(duality(of(artifact(and(

practice((of(object(and(circumstances(of(production)(is(key(to(understanding.((

(

Chapter!3.3:!Revisiting!affordances!of!information!
Overall(conclusion(is(that(the(downsides(of(the(recombination(affordance(for(

software(can(be(significant.((That(they(are(little(acknowledged,(but(actually(actively(

managed(outside(science.(Need(a(literature(on(influencing(ecosystems(of(

recombination.(

 Submission #18373

 1

The$Governance$Of$Software$EcosystemsFor
Science:'Challenges'And'Policy'Recommendations'

For$Sustainable$Scientific(Software!!

Abstract

The sustainability of scientific software is a key challenge for science policymakers and

those interested in the effectiveness and governance of science. We approach this question by

drawing on empirical studies of scientists using software and describe how components are

arranged with complements and dependencies into value-providing assemblies, periodically

revisited by their scientist users. Over time, software declines in scientific usefulness, driven by

four factors: a moving scientific frontier and technological change, production friction, use

friction and the software ecosystem context. In particular we highlight the impact of the

complexity of ecosystem context, in terms of the diversity of use-contexts in which a component

is used. We identify three broad strategies to address the need for work to sustain the usefulness

of scientific software: suppress the drivers, reduce the amount of work needed, or attract

sufficient resources able to undertake the work needed to sustain scientific usefulness. We

examine three resource attraction systems: commercial markets, community-based peer-

production and grant-making. We describe how these systems bring resources to projects, and

particularly highlight how both commercial markets and peer production address the challenges

of ecosystem complexity while scientific grant-making does not. We conclude by making

science policy and software ecosystem governance recommendations to address the challenges

of sustainability, by enhancing the grant-making system and by facilitating transitions to other

resource attraction systems.

Keywords: science policy; governance; software ecosystems; peer production

 Submission #18373

 2

1 Introduction

Science depends on software. From configuration and control of instruments, to

statistical analysis, simulation and visualization, virtually every workflow that generates

scientific results involves software. Recent research suggests that scientists may be spending up

to 30% of their time developing software and 40% of their time using software (Hannay et al.,

2009). Indeed, in many fields there is no scientific data without simulation models realized in

software (Edwards, 2010).

Visions of the future of science, such as the Atkin’s Report and the NSFs CIF21 vision

(Atkins, 2003; NSF Cyberinfrastructure Council, 2007), frame software as much more than a

supporting service: it can be a source of innovation and can enhance science by increasing its

transparency, reproducibility, correctness, transferability and scale (Ince, Hatton, & Graham-

Cumming, 2012; NSF, 2012; Stodden et al., 2010). In particular the vision holds that the

properties of software as an information artifact, its low marginal cost of reproduction and high

potential for re-use and recombination, offers the potential for relatively small initial investments

that can lead to increasing re-use and coalescence into widely used software platforms, resulting

in widespread, long-lived, impact in the form of better science (NSF, 2012).

Yet, as in other areas of human endeavor, software can also become a problem,

consuming time and resources from science, with duplicated work, poor quality results and weak

reproducibility (Atkins, 2003; Carver, Kendall, Squires, & Post, 2007; Dubois, 2005;

Gambardella & Hall, 2006; McCullough, McGeary, & Harrison, 2006: 11; Segal & Morris,

2008). Indeed questions about the quality of software and software work in science were at the

heart of recent debates about the reliability of scientific results for public policy precipitated by

the so-called “Climategate” incident (Reay, 2010; Ryghaug & Skjølsvold, 2010). The potential

contribution of software in science is thus undermined, resulting in practices that obscure rather

than reveal the underlying science (Ince et al., 2012; Stodden et al., 2010) and expensive,

frustrating, churn as packages are written and discarded.

A pressing question for science policymakers (or indeed those interested in the

organization of scientific work), therefore, is how to overcome these challenges and work

towards the positive vision of software in science. At a very general level these are questions of

how to govern (or shape) a software ecosystem combined with questions of how to govern (or

shape) scientific practice. Each question is independently complicated and particularly difficult

 Submission #18373

 3

in conjunction. More specifically, this includes questions of appropriate technologies and

development practices, but also questions of how software and its production and use intersects

with existing institutions. While concerns about the effectiveness of IT investments are far from

unique to science (Brynjolfsson, 1993; David, 1990), the specifics of science as a domain of

human activity bring forward new and interesting questions, including how the different

incentive systems involved in science structure work and innovation (e.g., David, 2002; Howison

& Herbsleb, 2011; Huang & Murray, 2010; Riggs & von Hippel, 1994). In particular there is a

growing realization that software is different from other scientific results because software,

unlike publications, has substantial ongoing costs if it is to remain scientifically useful, a pre-

condition to achieving the hoped for gains to science, such as improved transparency, correctness

and innovativeness. Indeed one of the very few empirical studies of ongoing software work in

science concludes that the ongoing work looks very similar to initial development work (Bietz,

Ferro, & Lee, 2012), a finding that echoes the growing emphasis on post-development costs

across the software industry (e.g., Boehm et al., 1995).

Further, software is almost always composed from multiple components. This raises

questions about how components and their different production systems interact, approaching

scientific software in a manner analogous to an innovation ecosystem (Adner & Kapoor, 2010;

Jansen, Cusumano, & Brinkkemper, 2013; Messerschmitt & Szyperski, 2005) and questions

about how technological structures interact with policy and strategy (Baldwin & Clark, 2000,

2006; MacCormack, Rusnak, & Baldwin, 2006). Finally, and practically, the challenge of

scientific software raises questions of science policy, from what outcomes to prefer and what

policy levers are appropriate for guiding activity towards those outcomes.

Scientific policymakers are aware of these opportunities and issues and contemplating

policy responses. The NSF has organized two workshops in recent years, “Software

Sustainability through Investment” (Alexander, 2009), “Cyberinfrastructure Software

Sustainability” (Stewart, Almes, & Wheeler, 2010) and a 2013 workshop at the Supercomputing

conference (SC13) “Working towards Sustainable Software for Science: Practice and

Experiences,” to consider challenges and solutions for sustainability in scientific software.

In this paper we draw on our existing empirical research to characterize the problem of

the sustainability of scientific software, and provide a framework for analyzing the issues in a

way that provides recommendations for the governance of scientific software ecosystems.

 Submission #18373

 4

1.1 Sustainability of what? Revisiting the goal.

From an innovation and science policy perspective, scientific software is valuable to the

extent that it ultimately advances the practice of science, contributing to the stock of knowledge

that underlies modern societies and economies. For this reason, we argue that it is most useful to

begin by understanding how it is that software is used by scientists and how time affects the

scientific value that software provides.

We draw on results from a qualitative study of software in science, reported in detail in

<blinded>. Figure 1, shows the results of reconstructing scientific software use. The

reconstruction began with three high-quality papers in different fields (high-energy physics,

micro-biology and structural biology) and, drawing on semi-structured interviews, built a

narrative of how the science was undertaken, focusing on the role of software. The empirical

work drew on the published articles, methods and materials sections and interviews with the

authors and research staff involved in the science, identifying internal documents and source

code produced in the course of the work.

Figure 1: 3 concrete reconstructed workflows and 1 abstract representation

In this way the research identified all the software used in the production of each paper,

arranging the software according to the workflow of the science undertaken. This workflow

grounded a narrative describing the software work underlying the science. Inspired by the

literature on innovation and software ecosystems (Adner & Kapoor, 2010; Iansiti & Levien,

2004; Messerschmitt & Szyperski, 2005), <blinded> described how and why each piece of

Instrument Data
Production

Simulation
Production

Results:
Plots

Systematic
Uncertainties

ROOT4STAR

Analysis Makers &
Macros

PYTHIA
STAR Core Software

team with Service
Work contributions

STAR Core
Simulation Production
+ 1 analysis scientist Two scientists (post-

doc and grad student)

Anaysis

Data
Analysis

Embedding
AnalysisMakers

Embedding
Software

Data
Production
Software

External
Open Source Project

ROOT
Framework

External
Open Source Project

Raw Data
from

Synchotron

Reflections
with

Coordinaties

Initial
Candidate
Structure

Refined
Structure

and
Fit Statistics

Figures
for

Paper

Scalepack (HKL-2000)
Denzo (HKL-2000) CCP4

Phaser

phenix.refine (PHENIX)
ELBOW (PHENIX)

COOT
PyMol

Express Purify Crystallize
Scan at

x-ray
Synchotron

SBGrid
Distribution

CCP4
Collection

PyMol
Project
(now

Schroedinger
Inc.)

HKL
Research

Inc.

Package
Authors/

Maintainers

Science-
specific
software

distribution

Packages
used

Software
Steps

Physical
Chemistry

Steps

Lab Cluster

MolProbity

WebService
(MolProbity Only)

Computing
Infrastructure

MolProbity
Authors

Science Workflow

Software Sourcing

PHENIX
Collection

ELBOW
Authors

Phaser
authors

Obtain
DNA

Sequence
DNA

DNA in public databases

Sequencher
Newbler

Identify
Organisms

Assess
functions

Assess
evolutionary

origins

ARB
Greengenes

Muscle
BLAST
Webservice

MrBayes

Interpret
Chromat-
ograph

v 2.0.1

v 2.2.8

Dependencies

Workflow
(components are

complements)

 Submission #18373

 5

software was produced and what role it played in the science. They began with software written

by the authors of the focal papers and extended outwards to the production of software used by

the authors then further outwards the production of the software on which each piece of software

depends. They grew this production web until encountering general purpose software whose

production was not driven by its use in science, such as word processors and operating systems.

One takeaway from these reconstructions was the location of any particular component of

scientific software within a matrix of both complements (horizontal in Figure 1) and

dependencies (vertical in Figure 1). Complements are those components which undertake other

aspects of that workflow, such that the high-level components together provide the collection of

information processing needed to generate the scientific result. Dependencies provide the

services which components higher up the stack utilize, either to provide still more services to yet

higher level components or, ultimately, to carry out steps of a scientific workflow. While

complements are often quite visible to the scientist who has likely handled that software

themselves, dependencies are often incorporated indirectly, brought into place by one of the

complements.

In the parlance of software practice, the top-level horizontal view is typically called a

workflow (e.g., Gil et al., 2007), while the vertical view is popularly called a “software stack."1

The arrangement of multiple elements into software has been referred to in the academic

literature as the "software architecture," (Garlan & Perry, 1995; Garlan & Shaw, 1993), sparking

a fruitful field of inquiry into the characteristics of software composition. Yet the work our

informants described did not much resemble architecture, with the implication that the architect

is aware of all the software implicated, envisions the components as a system and engages in the

joint optimization of that system.

Software as it was used by the scientists we spoke with was not just functionality that

results from a composition of functional elements, but also includes preprocessing, post-

processing and presentation elements that are brought loosely together and used to accomplish a

scientific purpose (Anderson, Ash, & Tarczy-Hornoch, 2007). Accordingly we call the work that

the domain scientists in our study engaged in “assembly,” emphasizing the manner in which they

arranged existing components, sometimes enhancing them with glue code or new, customized,

components specific to the scientific problem they are addressing. Accordingly, we call the

1 http://en.wikipedia.org/wiki/Solution_stack

 Submission #18373

 6

result of the scientists’ work a "software assembly," made up of many existing components and

perhaps one or two custom components brought together through mixed scientific and software

work.

1.2 Scientific assemblies over time

In one sense the scientist’s software assembly exists to execute and support the specific

piece of science embodied in a specific paper. Yet, over time, scientists revisit their assemblies,

seeking to re-use them as they push forward the frontier of their science. While our informants

often used the word “replication,” in practice they revisited their assemblies to apply them to

new data and to enhance them with changes, perhaps the addition of a new processing step or

using a new, better, algorithm in place of one used before. The scientific frontier moves forward

and the software assembly must move with it.

Revisiting software assemblies raises the question of what happens to these assemblies

over time. The clearest, but trivial, answer is nothing. At their core software assemblies are

compilations of 1s and 0s and given the trivial resources of electricity and disk storage they can

exist indefinitely as they were when first assembled.

Yet, in practice, the assembly’s relationship to scientific work changes and its scientific

usefulness declines. The scientist is not just running the code, but seeking to work with the code.

The desire to work with the code drives the scientist towards current, updated, versions of

complements, if not to take advantage of new knowledge reflecting recent scientific advances

embodied in new versions of software, at least to take advantage of new features, better

performance, new hardware support, the possibility of relevant documentation and the

availability of support, either from the developers or the user community.

This dynamic is quite apart from the difficulties of even running old code in the first

place. In practice, it appears that scientists are rarely aware of the software assembly as a whole,

due to the indirect incorporation of dependencies. Rather they focus on the portions considered

most primary, essential or novel. Thus storage may take the form of storing the full horizontal

workflow or, more frequently, it may take the form of storing only bespoke components and

plumbing work and listing complements. In many cases, storage is quite possibly more the result

of inaction rather than action, with the scientist having simply left the files where they were

when the science was conducted. After all, the paper is published and the scientist's attention is

elsewhere.

 Submission #18373

 7

Thus, for a software assembly to be re-visited and worked on, it must be laid out with all

complements and “on top of” its dependencies. The work of re-animating the assembly, even

those parts the scientist does not want to change, requires a sort of “software archeology”2

whereby the appropriate dependencies are identified, located and placed into service. Since

dependencies were often implicit and invisible at the workflow level even identifying

dependencies can involve a recursive and frustrating process of reading the "build files" of each

component, translating from various barely human-readable formats and puzzling out their

implications. The scientist, or more likely, the graduate student, undertaking this work will

typically find that the components they are seeking have themselves changed over time, as

discussed below, requiring them to trade off the work of obtaining historical versions and getting

them to work, against the work of adapting surrounding components to work with newer

versions. It is far from uncommon to discover what appear to be cyclic dependencies, to require

missing historical versions, or to require multiple, incompatible versions, requiring some level of

jerry-rigging at points in the stack. This experience is common to those working with software,

even outside science, and is described as a descent into "dependency hell."3

Even in the best of circumstances, then, the work of extracting ongoing scientific value

from software requires considerable work for the scientists. Even if the rest of the software

ecosystem had stood still, the moving frontier of science and the opportunities afforded by new

hardware build in dynamism at the edge.

But of course, the software ecosystem does not stand still; scientists revisiting assemblies

find that the components themselves have changed, often rapidly and in ways that require extra

work from end-user scientists (Bietz, Baumer, & Lee, 2010; see also Bietz et al., 2012). To

understand why, we must move our focus from the scientists preparing a particular paper to the

projects producing the components the scientist is assembling.

From the perspective of component producing projects, matters are both similar and

different. In one important sense any component is likely to itself be a software assembly: the

component has both dependencies and internal complements (external components that

participate in the flow of computing that the component as a whole produces). Further, like end-

users, component producers are themselves subject to the same pressures that drive forward work

2 http://en.wikipedia.org/wiki/Software_archaeology
3 http://en.wikipedia.org/wiki/Dependency_hell

 Submission #18373

 8

at the edge. They must manage changing opportunities offered by new hardware or execution

architectures. They too are motivated to improve their software, extracting greater or more

reliable performance. Moreover, many component producers themselves participate in the

scientific reputation economy, seeking to publish papers describing the advance of their tools, or

obtain new grants based on feature extension (Howison & Herbsleb, 2011). In short, the

component producer’s own scientific frontier moves forward, driving a need for novelty and

progress.

On the other hand, matters at a producing project are different. A project producing code

that others use, unlike an end-user scientist, has its artifacts passing into the scientific practice of

others. A component producing project has to not only produce potentially useful software, but

help its users realize that usefulness, supporting their use by documenting code, providing

examples and tutorials and, inevitably, answering questions.

And there may, of course, be many users. Thus the component might play a role in a

many different assemblies, interacting with many sets of data, complements and dependencies.

Some of these assemblies might be relatively similar, while some might be quite different, such

that the component can be arranged with different complements and dependencies, or perhaps

even more complexly, occupy broadly similar but subtly different positions. Moreover each of

these assemblies is being constructed and reconstructed at different points in time and changing

at different paces, driven by the changing scientific frontier and work rhythms of its scientist

users.

The image that presents itself (if we might be allowed considerable poetic license),

pulling back to consider a wide-lens view of all the software assemblies at once, is one of

components brimming with dynamic potential, vibrating in place, moving sideways to make

room for new complements, shifting downwards as new components build on their capabilities,

sometimes jumping to other kinds of assemblies entirely. Such a complex system is never in

stasis, nor does it change in regular or predictable patterns. To the extent that it supports

scientific work at all, it does so because of people's work on, with, and around components,

continually re-shaping them so they are scientifically useful in a particular position in a particular

arrangement at a particular time.

 Submission #18373

 9

If the work is not done, things break down. Components cease to merely vibrate in their

many assemblies but begin (if we might be allowed a continuation of our poetic license), to

rattle, to shake, to expel themselves from their place, like cogs flying free of a machine.

Yet scientists are still driven to do their science and their work does not stop. Rather, a

tension builds up around an assembly, frustrating its users and generating motivation to find a

different component that fits this changed niche. Either the scientist themselves, or their grad

student or post-doc, writes a new component more or less ideally fitted to this problematic hole

in the assembly, or the need is so widely felt that a new project emerges to fill the hole with a

new component. The component spreads out into other assemblies, both end-user and

component-producing, sparking new rounds of adaptation and adjustment as end-users revisit

their assemblies. As time moves forward, assemblies continue to change shape and this new

component itself, once ideally-fitting, begins to vibrate, perhaps even to rattle a little, requiring

its own work to sustain its usefulness.

Sustaining the scientific usefulness of software in our illustration above, is above all a

matter of work. Accordingly, we argue for a definition of sustainability as the condition that

results when the work needed to keep software scientifically useful is undertaken. The work

takes many forms, from assessing and meeting new scientific or hardware opportunities,

adjusting and adapting components, and supporting users. Of course, while we have not

emphasized it above, producing software itself involves significant work, from understanding

what to build, gathering the resources to attract team members, coordinating development in

sometimes far-flung teams and integrating contributions; even distributing new versions of

software to others is significant work.

To realize the potential of sustained innovation envisioned in the cyberinfrastructure

vision we argue that the need for work of all these kinds must be addressed. These needs can be

addressed in three main ways: 1) suppressing the causes that drive the need for work, 2) reducing

the effort needed to do the work, or 3) attracting and retaining the resources needed to do the

work.

We now turn to lay out more formally the factors that drive the need for different kinds of

work, focusing in particular on the impact of ecosystem context. We then characterize the broad

strategies for addressing these needs, focusing in particular on the capabilities of different

resource attraction systems to face the challenges of particular ecosystem contexts. We conclude

 Submission #18373

 10

by recommending appropriate science policy responses aimed at improving the effectiveness and

efficiency of the scientific software ecosystem to in supporting science.

2 What drives the need for different kinds of work?

If the scientific usefulness of software is to be sustained, four drivers of needed work

must be addressed: 1) exogenous drivers, 2) production friction, 3) use friction, and 4) ecosystem

context.

2.1 Exogenous drivers

Two key drivers that require work are 1) progress in science and 2) changes in underlying

technologies. The progress of the scientific frontier throws up new questions, data and

approaches, both within fields already heavy in computation and as fields develop computational

methods. The progress of science is uneven and extremely difficult to predict. Scientific

opportunities are also urgent, linked as they are to the opportunity for scientific priority and the

reputational rewards that come with it.

The invention of new computational technology also plays a role in creating a need for

work in scientific software. This is clearest when a new generation of hardware technology

arrives, such as the development and spread of parallel computational architectures, the

widespread availability of specialized GPUs, or the ubiquity of mobile computing. These

underlying changes create opportunities to exploit new performance capabilities. In some cases

they reduce the cost or time of computation in a manner which passes a threshold and brings

techniques previously too expensive within the bounds of possibility.

2.2 Production Friction

A clear set of factors driving work in scientific software are linked to the production of

software. In short the production of code is not a simple, smooth process, but requires significant

knowledge and effort to execute successfully. This is true whether we consider the initial

production of novel software components, or on-going improvement or adjustments. Even if the

rest of the drivers of work are held constant, it is difficult to know what to build, to create a

design that meets requirements, to realize it in code and to test its performance. Since

development projects are often large enough to be beyond the capabilities of individuals,

 Submission #18373

 11

additional friction derives from working in teams (even if all resources are committed):

designing appropriate task breakdowns, managing interdependencies, integrating contributions as

well as managing conflict and providing leaderships.

2.3 Use Friction

If code is to become widely useful in science, the code must find its way from its

production environment to scientist users, be assembled with dependencies and complements,

and be configured appropriately. As with production work, this is far from a smooth path.

Software must be released: it must be packaged and made available to users for download, both

initially and for new versions. If users are to use the code effectively they must come to

understand its potential, its operation and its limitations, both initially and with on-going

releases. As described above any component must be arranged with complements and

dependencies in order that it do scientifically useful work. This means understanding interactions

between components, often in situations unanticipated by the component’s producers.

2.4 Ecosystem complexity

A fourth driver of work derives from the complexity with which components are arrayed

by scientific end-users and the frequency and rhythm of change of those components. To

understand this driver, we consider an aggregated view of science end-user assemblies and to

consider the position of individual components within that aggregation. The relationships of use,

complementarity and dependency form a complex web which has been referred to as a software

ecosystem (Adner & Kapoor, 2010; Jansen et al., 2013; Messerschmitt & Szyperski, 2005).

We argue that the manner in which a scientific software system drives the need for work

can be understood by drawing on two dimensions: 1) users, a simple count of the number of

assemblies that a component appears in, and 2) use-contexts, the number of different positions

that a component appears in across assemblies. Use-contexts are loosely related to scientific

fields, but since different fields can use components with similar complements and dependencies,

and different scientists within a field can array the same component differently, the relevant

context is not the discipline of the scientists, but the “neighborhood” of components with which a

component is arranged.

We refer to the combination of these dimensions as ecosystem context. Figure 2

illustrates this, with number of users on the vertical and number of different use-contexts on the

 Submission #18373

 12

horizontal. We show the top left as generally unreachable, because although some use-contexts

might have a relatively large pool of potential users, others will only have a small pool, thus in

general the highest potential number of users can only come by moving rightward, implying a

larger number of use-contexts. Similarly the bottom right, reflecting a high number of use-

contexts but a low number of users, is practically unlikely because each different use-context

implies use in a different software assembly, implying at least one user per assembly.

Nonetheless, there is a wide variety of ecosystem contexts available: from the bottom left of a

component with only a single user (and thus a single use-context), to the middle-left of a

component with only a few use-contexts, but each with multiple users, to the upper-right,

reflecting a component arrayed in many different use-contexts and having many users. Each of

these dimensions is associated with a different balance of production and use friction and thus

needed types of work.

Figure 2: Ecosystem context

2.4.1 Greater user numbers

As one moves vertically and considers components with higher numbers of users—but

each with similar use-contexts—production friction stays relatively constant while use friction

rises. Production friction stays close to constant because the solutions and artifacts, once found,

are available for distribution to all users and are useful for all users. Requirements work can be

Diversity of use contexts

N
um

b
er

 o
f

U
se

rs

Generally unreachable area

Unlikely region

low high

Few

Many

 Submission #18373

 13

done with any single user and the project must only monitor and learn of changes to a single set

of complements and dependencies.

Use friction, on the other hand, rises with the number of users, each of whom must come

to know how to make use of the component, obtain, and array complements and dependencies.

More users, even with identical use-contexts, brings with it more questions that must be

answered; this is especially true because users, even with identical use-contexts, are likely to be

at different places on their learning curves. Yet because use-contexts are similar, as with

solutions to production problems, solutions to use problems are more likely to be re-usable. In

this way documentation useful to one user is likely to be useful to others, and answers of

questions for an early stage user are likely to remain useful as other users, new to the component,

begin their use.

2.4.2 Greater numbers of use-contexts

The dimension of use-context is associated with a different balance of production and use

friction. As one moves horizontally and considers components with a greater diversity of use-

contexts, production friction rises, while use friction remains relatively constant. Production

friction rises because each use context implies a different source of change through the

complements and dependencies with which a component is arranged. When a neighboring

component changes, there is a need to understand those changes, assess whether a response is

needed and to produce the relevant changes to retain the scientific usefulness of an assembly. As

we will discuss below, this work can be (and often is) done at different places in the ecosystem,

including by the end-users or the producing project. If it is done by other than the end-users then

each adjustment also implies more production friction, in the form of packaging, releasing, and

distributing the relevant changes.

If a change in a single surrounding component drives a need for production work, change

occurring across the variety of use-contexts implies a rapid increase in production work; indeed

because this work is driven by the combination of components and the solutions produced are

not necessarily re-usable, or even compatible, the increase in the need for production work is

super-linear as the diversity of use-contexts rises.

The frequency and rhythm of change in surrounding components can also drive a need

for work. Frequency matters because each individual change in a neighboring component implies

 Submission #18373

 14

a round of assessing, adjusting and, perhaps, distributing changes. Therefore frequency of change

acts similarly to changes in the scientific frontier and underlying technologies, injecting new

needs for adjustment work. The more frequent the changes, the more work that needs to be done

to keep a component scientifically useful.

The rhythm of change can also be important. This is because adjustments take time to

spread through the network of dependencies and out to end-users. At some point new changes

could be occurring before the adjustments to the last changes have spread throughout the

network, especially if changes occur close together in time. This leaves some users working

with older versions, complicating user support and adjustment to changes in surrounding

components. If the exogenous needs for change are pebbles dropped in a pond, the impact of

rhythm and pace can be thought of as ripples catching up with and over-taking each other;

adjustments originating in the same place, but at different times and traveling through scientist’s

software assemblies at different speeds.

The impact of the frequency and rhythm of change depends on the ecosystem context, in

terms of number of users and diversity of use-contexts. This is best understood considering a

project monitoring how its component is being used and undertaking production work to adjust

for changes in its use-context. If that component has many users, but they are all using the

software identically, then a change in the use-context is relevant to all the users at the same time.

Provided the component producing project hears of and understands the change, a solution can

be produced and distributed to all users. The frequency and rhythm of changes may vary, but the

requirements occur at the same time, and the adjustments are relevant to all users at the same

time.

However, when use-contexts vary, adjustments may be called for by many different

components at the same time. Moreover each adjustment may be relevant to only some of the

use-contexts, and not to others (or worse, an obvious solution for one use-context might be

incompatible with others). This can be illustrated as dropping multiple rocks into a pond in

different areas at different intervals; as the ripples move outward they begin to overlap and

interact, crisscrossing or perhaps doubling-up.

Finally the already complex situation can be further exacerbated because adjustment

work does not only occur at a component producing project, but can also occur at scientific end-

use points. This might occur because the end-users are under deadlines, do not understand the

 Submission #18373

 15

origins of different components, or do not relish interacting with (and thus being dependent on)

other groups to manage the changes they perceive in surrounding components (e.g., Howison &

Herbsleb, 2011). Such changes can quickly lead to bifurcations in use-contexts between user

assemblies (changes in a component’s neighborhood) and a component producing project can,

without their knowledge, move from having few use-contexts to the much more complex

situation of having many use-contexts. Worse, as use-contexts multiply the demands on a

component producing project to collect and respond to changes rise, potentially creating

additional delays that lead to further end-user adjustments and exponentially exacerbate the

problem.

Table 1 shows the kinds of work called for by these different drivers.

Production Work
 Design Deciding what to build
 Development Building the design
 Integration Adding new contributions to the existing codebase
 Release work Making code available
 Management work Coordinating contributors
User Support
 Documentation Providing non-code resources to explain software use
 Answering questions Helping users by answering specific, contextual, questions
Ecosystem Work
 Sensing Observing use-contexts to see changes in surrounding

components
 Adaptation Adjusting components to continue to work
 Synchronization Collecting adjustments for release to avoid cascading re-

adjustment
Table 1: Different kinds of work required to sustain the scientific usefulness of software

3 What can be done about the needed work?

Sustainability in scientific software is a problem because the four factors outlined above

require ongoing work to ensure the ongoing scientific usefulness of software. In this section we

outline three broad strategies to addressing these needs. The three broad strategies are 1) to

suppress the factors driving the need for work, 2) to reduce the amount of work needed, and 3) to

attract resources willing and able to do the work needed. In the following sections we consider

the feasibility and realization of each strategy in science.

 Submission #18373

 16

3.1 Suppressing the factors driving the need for work

The simplest way to address a need for work is to suppress the factor driving that need.

3.1.1 Suppression of exogenous drivers

An obvious initial strategy is to avoid the issue entirely by not using software at all, thus

obviating the impact of all other factors. A second, less severe, strategy would be to reduce or

eliminate change resulting from the progress of science or the production and introduction of

new technologies.

Indeed, analogies to these approaches are indeed used outside science. For example the

music business is notorious for seeking to resist the introduction of disruptive new technologies

or approaches, or at least to slow their introduction while they adjust other aspects of the industry

(such as streaming licensing agreements) to preserve the profit-making potential of the industry

(e.g., Leyshon, 2001). This includes efforts to synchronize and pace the introduction of new

technologies, facilitating their saturation of the market prior to introducing the next technology.

On a less grand scale, however, suppressing the introduction of new technologies is a

common technique in large organizations. By standardizing a technology across an organization

and resisting the introduction of others, the organization trades some innovative potential for

reduced complexity (Alt, 1964; West, 2006). A classic example is standardizing on the use of a

particular language, say Java, and restricting the use of newer languages, such as Ruby. Other

examples include suppressing the introduction of a new generation of a technology into an

organizational ecosystem, especially until the organization as a whole has transitioned, and

perhaps choosing to skip a generation (or many generations). An example would be choosing not

to upgrade from Windows 95 to 98, but moving directly to Windows XP. Those responsible for

strategy in the organization perceive the complexity of cascading adjustments needed, choose to

suppress a cause, and shoulder the frustration at the edges that commonly results from such

policies.

Within science, of course, this strategy is problematic not only because of the high

valuation of innovation, but also impractical because of the lack of centralized decision-makers

with appropriate insight and legitimacy to command and enforce any suppression oriented

strategies. Further the periodic, rather than continuous, nature of scientific end-use reduces the

value to be derived from exploitation of existing technologies (which have aged and possibly de-

 Submission #18373

 17

synchronized in the time elapsed between revisiting software assembles) and prompts efforts to

be “up to date.” Nonetheless, suppression strategies can be and are enforced more locally, such

as within individual labs, centers or scientific collaborations.

3.1.2 Suppress the impact of complexity of the ecosystem context

A second set of strategies focuses on the work requirements driven by ecosystem

complexity. As argued above, the need for sensing, adjustment and synchronization work is

primarily driven by the diversity of use-contexts with which a component is arrayed. Yet the

impact of changes in these diverse use-contexts and the route that impact passes through the

ecosystem can be affected by the overall ecosystem structure, particularly the creation of layered

and platform architectures (Baldwin & Woodard, 2009; Baldwin & Clark, 2000; Boudreau,

2010; Garlan & Shaw, 1993; Gawer & Cusumano, 2002; Iansiti & Levien, 2004).

Figure 3 depicts three idealized ecosystem structures. In this illustration two

components are connected if they are used together in at least one software assembly (whether

that be as a dependency or a nearby complement), thus these diagrams are different from the

software assemblies of Figure 1. The lines represent potential paths of change impact,

transferring through the software ecosystem and generating a need for adjustment at the

component. One can think of these diagrams as transmission paths, such that a change at a

particular component (perhaps resulting from a change in the scientific frontier) acts like a

“pulse” and can be transmitted along these lines. When that pulse reaches a connected

component, adjustment work there might cause a new pulse, such that components connected to

the newly adjusted component now may need to undertake adjustment work.

Panel A Panel B Panel C
Figure 3: Structure of component co-use aggregated across software assemblies

 (lines indicate components are used together in at least one software assembly)

 Submission #18373

 18

Panel A of Figure 3 illustrates a randomly connected component graph, including

relatively dense interconnection, long paths and circular connections. Changes initiated

anywhere in this network can have impact across the graph, sparking resulting adjustments that

cascade chaotically throughout the graph. Some components are heavily connected (reflecting

use in a high diversity of use-contexts), concentrating work requirements and creating bottle-

necks for adjustments. The circularity of the interconnection even raises the possibility of self-

sustaining loops, where the ecosystem never completes adjusting to a cascade of changes.

Panel B depicts a hierarchical arrangement of interconnections, often known as a layered

architecture. Connections follow single, hierarchical paths, excluding the possibility of

circularity. A change in component requirements in such an ecosystem radiates “up-stream” until

finding a position of maximal generality, before finding a route back “down-stream” to

minimally connected components which are end-points for waves of adjustment. Fewer and less

complex paths of interconnection restrict the impact of ecosystem complexity and minimize the

needed work.

Panel C depicts a further refinement of the hierarchical structure, separating components

into different types and collecting those that are densely or circuitously interconnected into a

platform. The platform acts as a single large component, hiding complexity from the ecosystem.

Changes from the edges collect in the platform, general solutions can be found and released in a

synchronized manner, reducing cascades of adjustment. In the particularly idealized arrangement

shown in Panel C, components above the platform have no connection other than with the

platform. Not all platforms realize this additional constraint, for example Apple’s iOS comes

close (applications on a phone do not rely on services from each other) while components using

the Eclipse or R platforms often draw on services provided by other, non-platform, components.

Fewer interconnections outside the platform implies trading off potentially innovative

recombination at the edges in order to suppress ecosystem-wide requirements for on-going

sensing, adjustment and synchronization work.

Ecosystem-wide architectural patterns can be powerful in suppressing the need for work

to maintain the usefulness of components. Indeed, science policy-makers are well aware of the

usefulness of platform architectures, as indicated in the NSF’s CIF21 software agenda (NSF,

2012) and the popularity of the “middleware” architectural design pattern. Yet it is rarely noted

that achieving rationalized architectures involves influencing the behavior of end-users, not only

 Submission #18373

 19

component producers. This is because, as we have argued above, ecosystem context derives not

from design intentions at component producers but from the manner in which end-users put

together components. In hierarchical organizations behavior of end-users can be enforced

through top-down, directive, policies, such as that employed at Amazon by “Dread Pirate Bezos”

(Yegge, 2011), requiring all components to implement a web-services interface and to use

Amazon’s infrastructural services. Firms selling components can enforce particular conditions on

their use (as Apple does with its iOS platform, particularly through controlling access to its App

Store).

Yet science policy-makers do not have directive power over scientist end-users; in fact

directive control would be seen as illegitimate since that would undermine the freedom of

scientists and the wellspring of innovation seen to underlie scientific progress. For example

policy-makers cannot require the use of particular software components, choose not to place

requirements on the use of components they have funded with other components, nor can policy-

makers prevent end-users from creating (and then releasing) custom components. As a

consequence, creating and maintaining rational architectures is a particular challenge; we

consider options to use this strategy that are available to science policy makers in our conclusion.

3.2 Reduce the effort required to do the needed work

Efforts to suppress the drivers of work requirements can be powerful, but short of

abandoning software, its re-use, or its innovative recombination, suppression will not be

complete and requirements for work will remain. Accordingly, an appropriate focus is on efforts

to make the work easier to accomplish, requiring less effort to satisfy the requirements for work.

A great deal of effort has been focused on this topic, especially in the field of software

engineering which has created tools, principles and processes focused on reducing the difficulty

of software work.

For example integration of code from two or 1000s of people is made more tractable by

technologies from file diffs, to merge conflict reports in cvs, to git patch sets and github's pull

requests and pull request discussion forums. Releasing is much improved by compiler

technologies such as universal binaries or build-systems, from make to Capistrano, that automate

and regularize build, test and deploy, extending to efforts like the NMI Build and Test facility

(Pavlo et al., 2006). Similarly user support can be facilitated by ticket tracking systems and

 Submission #18373

 20

customer relationship management systems. Even some aspects of synchronization work

resulting from ecosystem complexity are the targets of technological time-savers, such as

continuous integration extending beyond unit testing to integration testing in lead-user

workflows (e.g., Trader, 2012). Some projects aim even higher, working to build infrastructure

that automates software production itself, by mapping from mathematical proofs (e.g.,&
Bientinesi,&Gunnels,&Myers,&Quintana4Ortí,&&&Geijn,&2005) or machine learning techniques like

genetic algorithms. These tools are akin to the application of capital machinery to improve the

profitability of manufacturing, by both reducing costs and risks.

Design principles can also reduce the work needed. For example the principle of

information hiding modularity is argued to reduce the complexity of integration work in

production (Parnas, Clements, & Weiss, 1981). Ecosystem drivers of work can be reduced when

producers follow the principle of only allowing slow change of interfaces for components on

which much depends or other techniques designed to facilitate efficient evolution of software

architectures (e.g., Garlan, Barnes, Schmerl, & Celiku, 2009). Practice-led principles of

collaborative development are also important, such as "avoid codebombs" or "head must always

build" (Howison & Herbsleb, 2013) because they mitigate integration work, while governance

principles such as Apache's action-oriented +1/-1 veto rules play a role (Fielding, 1999; e.g.,

O’Mahony & Ferraro, 2007). Other principles, such as the usefulness of cultivating a community

of active users can reduce the impact of providing user support (e.g., Lakhani & von Hippel,

2003). Finally software process methods, such as agile methodologies are designed to reduce the

gaps between requirements and development, and also make synchronization work easier, by

bringing producers and potential users closer together through shorter cycles of development and

release (e.g., Beck et al., 2001).

These technologies and principles can sharply reduce the amount of work necessary and

are undoubtedly important to the overall challenge of sustaining scientifically useful software

and software projects. Yet, just as the requirements for on-going work cannot be completely

suppressed, two factors mitigate against efforts to reduce the difficulty of the work required as

complete solutions to sustainability. Efforts in this direction never entirely eliminate the need for

work and they are themselves work to establish and sustain. Consider the initial effort needed in

educating a lab in the proper use of git, or the effort to seek appropriate workflows for

continuous integration testing. Even once established, techniques and technologies require effort

 Submission #18373

 21

to sustain them, such as the inevitable work needed in, for example, keeping a continuous

integration system itself up to date.

In summary, then, tools and techniques are crucial to software sustainability and the

cyberinfrastructure vision: without them the amount of work needed would simply be

prohibitive. Yet work reduced by orders of magnitude is nonetheless work; if no one is available

to do it then all the labor-saving technologies in the world will not sustain a project, nor the

scientific usefulness of the software it produces.

3.3 Attract people willing to undertake the work needed

If the need for work to maintain the scientific usefulness of software cannot be

suppressed nor effectively eliminated by making the work easier to do, then the work must be

undertaken by people. This means that projects must attract human effort (and continue to attract

it), drawing together motivated actors with appropriate skills to undertake work. The manner in

which this is done we call the resource attraction system, which refers to collective mechanisms

which establish incentives for people to participate in scientific software projects. We discuss

three abstract resource attraction systems: commercial markets, open source peer production and

scientific grant-making. While much could be said about each system, below we consider how

they scale across the two dimensions of ecosystem context, particularly how they address

complexity resulting from wider use-context diversity.

3.3.1 Commercial markets

A project selling software in a commercial market attracts resources by restricting the

availability of its product to only those willing to pay, thus receiving revenue in the form of

money. This money is then available to motivate work through the payment of wages or

purchasing services from other market participants, thus motivating the accomplishment of the

necessary work.

As the number of users rises, so does the revenue received as each user pays their

licensing fee; resources available to the project rise linearly with the number of users. Assuming

there are sufficient users willing to pay (a non-trivial condition) this enables the project to cover

initial development costs and pay employees to ease use and distribution friction.

As the number of different use-contexts rises, projects employing commercial sales face

the need for work driven by ecosystem context. Yet the act of a sale helps to accomplish insight

 Submission #18373

 22

into use-contexts, facilitating sensing and adjustment work. This is because as a side-effect of

sales, a project drawing resources from commercial sales learns about their customers. Since a

sale requires payment, companies learn the identities of their users, facilitating on-going contact.

Sales themselves also give insight into the use-context of the customer. In small contexts this

may result from detailed sales interactions as the company provides pre-sales support to users,

work that is funded by the additional revenue derived from that specific sale. At larger scales,

information about the suitability of the product in a changing software ecosystem comes directly

from the pricing system, dissatisfaction reflected in customer’s declining willingness to pay.

3.3.2 Open Source Peer Production

Peer production is the resource attraction system that functions in successful non-

commercial (or community-based) open source software projects (Benkler, 2002; von Hippel &

von Krogh, 2003). Despite the common association, peer-production ought to be distinguished

from "open source." Being open source is a characteristic of the code, while peer production is a

characteristic of how it is produced: it is possible to be open source but not to be resourced by

peer production (for example many grant-funded or even commercial projects are).

The literature on motivation to participate in open source has identified a set of non-

monetary motivations, from the use value of the software itself, an opportunity to build

reputation, an opportunity for learning, to a chance to express a communitarian ideology and to

work in teams (Crowston, Wei, Howison, & Wiggins, 2012; Roberts, Hann, & Slaughter, 2006).

Resources (in the form of direct labor) are attracted to projects that provide circumstances in

which these motivations can be satisfied (Benkler, 2002; Crowston, Wei, Li, Eseryel, &

Howison, 2005; Howison & Crowston, 2014; Ke & Zhang, 2010; Michlmayr, 2003).

Despite the oft-celebrated differences from markets, the manner in which peer production

attracts resources can be understood in a broadly similar fashion. The analogy to market

allocation is clearest when considering the use value of software as a motivator: software that has

use value (because it reduces a user’s expenses) frees up money that can be directed to fund

employee's participation in an open source project. Germonprez and Warner (2012) call this

“leveraged development.” The value generated by the use of the software is sufficient to

motivate paying an employee to participate. But money doesn't have to be involved: a user that

uses a piece of software to get their scientific work done might easily perceive that it is of value

 Submission #18373

 23

to them to do the work needed to include that component in their software assembly, or to

undertake development work to improve a feature. In this sense resource allocation is

decentralized and relatively undirected: participants build what they are motivated to build.

Unlike a market, however, the type of work that a prospective participant will do is

linked to the motivations that attract them to the project in the first place (Conley, 2009; Dalle,

David, & Rullani, 2009; Hertel, 2007; Howison & Crowston, 2014). Not all kinds of work can

satisfy different kinds of motivations: a motivation to adapt the software to produce scientific

plots for a particular scientific problem does not motivate the provision of support to other users.

As the number of users rises, peer production projects do not automatically gain

additional resources, unlike commercial sales. In fact, peer production projects can be

ambivalent to rising user numbers. Terry et al. (2010) found that developers saw non-

contributing users as additional sources of user support burdens, rather than sources of rewards

and motivations. On the other hand, developers motivated by reputation or status might see high

users numbers as an advantage, although this is more likely to motivate development work than

it is individual user support.

As the number of use-contexts rises, peer production faces intensified sources of

complexity from ecosystem context. In fact the ease with which open source components can be

combined implies more re-use of outside code than might be found in commercial sales, where

each dependency might need to be separately licensed. Further, the freedom to download open

source code also implies that peer production projects do not have legitimacy to register their

users and so do not have contact or tracking information for their users, reducing their ability to

track change in use-contexts.

What peer production projects do have, however, is openness to contributions from their

users, both in code contributions and by hosting discussion forums. Users are empowered and

encouraged to alter component code, a characteristic open innovation researchers have called

“actionable transparency” (Colfer & Baldwin, 2010). In this way peer production project users

perform the sensing and often the adjustment work needed to deal with both exogenous and

ecosystem context changes. The openness and ability to make changes to other people’s code

creates the possibility of projects receiving information and partial solutions to changing usage

contexts and collating them, passing solutions (or challenges) “upstream” to other projects.

 Submission #18373

 24

Finally, the emergence of software distributions, such as Debian, as independent peer production

projects creates opportunities to manage the complexity of ecosystem context.

3.3.3 Grant-making

A third resource allocation system is particularly relevant in science: the provision of

resources through grants provided by funding agencies, including government agencies and non-

profit foundations. In the US, as one example, these agencies include the NSF, the Department of

Energy and the National Institutes of Health, as well as foundations such as the Sloan

Foundation.

In some sense grant money is akin to investment capital: it is made available with the

hope of amplified future returns. Unlike venture capital, however, these anticipated returns are

framed not as financial profit but in terms of achievement of more and better science. To this end

agencies set aside a portion of their funds aimed at supporting science in general and choose to

invest them in supporting software work relevant to science. In the words of the NSF’s

implementation of the CIF21 Cyberinfrastructure vision, “Software is thus an integral enabler of

computation, experiment and theory … [and] also directly responsible for increased scientific

productivity and significant enhancement of researchers' capabilities” (NSF, 2012).

The particular investments made are guided by peer review and result in transfers of

funds to projects which are converted to software work by providing rewarding opportunities for

potential participants. This is particularly clear when projects pay directly for software work. Of

similar importance are opportunities for activities resulting in scientifically valuable reputation,

such as being among the authors of scientific papers.

Exactly how peer-review panels aimed at software work, in particular, choose what to

fund is not well understood, but peer review panels in general emphasize scientific contribution,

which has traditionally been closely linked to the production of knowledge instantiated in the

scientific literature (i.e., publications), with an emphasis on both novelty and advancement of

knowledge in the particular fields of the reviewers. Thus there are tensions between assessing

what projects are likely to make contributions to, say, computer science and those likely to best

facilitate science in other fields (e.g., Olson et al., 2008). This creates a tension between writing

grants that promise novelty and transformation over needs to fund needed ongoing work.

 Submission #18373

 25

Like peer production and unlike commercial sales, grant-funding is not directly linked to

user numbers: as user numbers rise, support requirements rise but no additional resources are

available. Larger user numbers are indeed important to component producing scientific software

projects but only produce resources indirectly through future grant applications (Batcheller,

2011). In essence the project has to make a public-goods argument: the project is worthy of

ongoing support because it provides a public good that would otherwise not be available,

benefiting all members of the ecosystem. Projects have to periodically make the case that their

continued contribution is sufficient to justify taking funds that would otherwise earmarked for

direct funding of science. In other words, the project must argue that these funds ought to be, in

effect, taxed at their source and given to the project to function as a service center, so that it can

reduce the work that its users would otherwise have to do.

As the diversity of use-contexts rises, grant-funding offers no built-in mechanism to

moderate the exponential growth of work driven by complex ecosystem contexts. Unlike

projects using commercial sales, grant-funded projects do not attempt to control the distribution

of their software; they do not have the prism of sales to provide insight into user assemblies. Yet

unlike peer production, grant-funded projects are seeking to make the argument that they reduce

the work of their users and this complicates attempts to learn about use-contexts through

openness to outside contributions. Rather, grant-funded projects must work directly to achieve a

transfer of understanding about how the components are arranged into assemblies and how each

of those assemblies is changing over time. These transfers take time, represent significant cost to

grant-funded projects, and involve considerable interdisciplinary challenges as component

producers seek to understand cutting edge science across a diverse range of use contexts (e.g.,

Faniel, 2009).

4 Policy Recommendations

Our analysis above has identified the management of complexity as key work that needs

to be accomplished for sustainability in a software ecosystem. We also argued that of the

available resource attraction systems, grant funding has the weakest mechanisms to suppress,

reduce, or attract resources able to complete this work.

Science policy towards the governance of scientific practice is limited in both legitimate

goals and techniques. For example, the importance of preserving innovative freedom of action in

 Submission #18373

 26

science is paramount, rendering approaches that attempt to control end-users with binding

detailed directions are unlikely to be considered legitimate. Similarly, attempts to reduce the

exogenous factors driving work in the scientific ecosystem, the moving scientific frontier and

novel technologies, are likely to be seen as counter-productive; putting the cart before the horse,

as it were.

Nonetheless, two broad approaches are both legitimate and feasible. The first broad

strategy is to improve the ability of the scientific software ecosystem to manage complexity by

enhancing the grant making system itself: encouraging insight into end-user software assemblies,

being welcoming to end-user contributions, and funding domain-specific distributions. The

second broad strategy is to facilitate the transition of projects to alternative resource attraction

systems, commercial sales and peer production, as appropriate.

4.1 Improve insight into scientific assemblies

A key challenge for policy to address is to enhance the visibility of the use contexts of

scientific software components. In essence this means understanding how components are

arranged together to produce scientific results, enabling component producers (and others) to

sense and rationalize the need for adjustment work at the edges. Visibility of end use contexts

would also provide the possibility of anticipating changes in surrounding components and

coordinating with other projects to minimize the need for adjustment work and contain potential

cascades of reciprocal adjustment. Moreover, insight into usage can shape end-user behavior,

driving coalescence to components through information cascades (Bikhchandani, Hirshleifer, &

and Welch, 1992), as scientific end-users perceive what other scientific end-users are using and

become preferentially more likely to use similar components. Insight into usage can therefore

provide a lever to realize ecosystem architectures capable of suppressing complexity.

At present, however, component producers have surprisingly little insight into use,

especially as it becomes widespread: they may know how many people have downloaded their

software, (or even who has downloaded it, if they use a required sign up for download) and they

may be able to search for citations to their software papers (assuming that they have made a clear

citation request and that it has been followed by users). While these insights may help to

demonstrate usage and scientific impact (and are indeed used by many projects, albeit

imperfectly) they do not shed light on the complementary components and their dependencies.

 Submission #18373

 27

While projects may work closely with particular key users (Bietz et al., 2010, 2012) or convene

domain-wide requirements gathering meetings, these methods are resource intensive and do not

scale to the broad and deep insight required in situations of ecosystem contexts with high

diversity of use-contexts.

Accordingly, science policy should focus on gathering and sharing insight into the

software assemblies of scientific users. Happily this dovetails with the broad policy goal of

increasing transparency towards reproducibility (e.g, Stodden et al., 2010). For example,

contribution to code and data archives are being required at journals and conferences, leveraging

a key influence point in the scientific world (Ince et al., 2012). Our analysis suggests an

additional use of code archives: they can be aggregated and mined to understand

complementarities and links between components, providing insight to component producers. A

similar source of software assembly insight is available when scientific computing occurs in a

cloud or distributed context, for example when projects access supercomputing resources.

Supercomputing centers have focused on measuring utilization of their computational resources,

but not on gathering insight into the code running inside jobs. Nonetheless recent work has

begun to record the use of libraries on remote scientific platforms, focused on optimizing

utilization by ensuring that users are employing the best libraries (e.g., McLay & Cazes, 2012).

Similarly, scientific gateways to which workflows (or, better yet, assemblies) are uploaded to be

run or shared would be useful sources of data on software assemblies (e.g., Goecks, Nekrutenko,

Taylor, & The Galaxy Team, 2010; Roure et al., 2009; Stodden, Hurlin, & Perignon, 2012).

Focusing on obtaining insight into use contexts, rather than the hosting of reusable

workflows or components, suggests alternative design emphases for these systems. For example,

research would be needed to produce the most useful approaches (and therefore likely to be used

by scientists) to creating such archives. Candidates include enhancements specifically aimed

towards improving ecosystem insight, such as a step in the upload where components used are

automatically detected and a selection interface presented to ask uploading users to confirm

recognition of packages. A key issue here is to understand the legitimate privacy or competitive

concerns of scientists and how to alleviate them, such as through trusted repositories,

anonymization or sufficient aggregation.

Systems that actually enhance the existing workflows of scientists, rather than attempt

wholesale changes in practice, might be more successful. One possibility would be analyzing the

 Submission #18373

 28

uploaded assemblies to help scientists identify which articles ought to be cited. Science policy-

makers should encourage the creation of collections of software assembles and should fund

research into mining collections of scientific software assemblies to explore appropriate

techniques to identify sources of adjustment work, hidden complementarities and to best notify

component producing projects.

A second approach to improving insight would be to incentivize funded projects to accept

and cultivate contributions from end-users. As discussed above, peer production gains insight

into use-contexts as users push their adjustments "upstream." Science policy-markers should

make it clear that facilitating outside contributions (by those not supported by the project’s grant)

is appropriate and necessary for grant funded projects, and that having outside contributors does

not mean that the project is having others do the work that the project was funded to do. Finally,

policy-makers should make it clear that having outsiders contribute does not imply that projects

are less in need of ongoing support. Actions in this area can be as simple as asking funded

projects to report on their efforts to attract outside contributors and highlighting success in

creating contributing communities to peer-review panels as a positive towards continued or

renewed funding. Establishing an online presence likely to encourage external contributions is an

appropriate subject for project education, drawing on techniques from open source peer

production where the goal is to establish "actionable transparency" (Colfer & Baldwin, 2010);

the perception that outsiders can and should contribute.

A third approach is for science funders to incentivize synchronization work and the

emergence of layered architectures capable of suppressing the need for synchronization work.

While science policy-makers are limited in the directive power and legitimacy needed to enforce

standardization in a top-down manner, insight can be drawn from the open source peer

production world and encourage the emergence of distributions of software components.

Distributions not only assist end-users by providing components in a form that eases the

identification and location of dependencies, but they form a natural location for the coordination

of software adjustments, both in pushing changes "upstream" to the most general component, but

also in caching adjustments in time and suppressing costly circular cascades of adjustment work.

Examples of funded distribution work are few and far between. The SBGrid project is a good

example, focusing on providing coordinated software installs for Structural Biologists (Morin et

al., 2013). Science policy-makers should issue specific solicitations for work to build domain-

 Submission #18373

 29

specific scientific software distributions, bridging between users and component projects and

emphasize to peer review panels the complexity and importance of this work, both to the

effectiveness of end-user scientists and to sustainability across the scientific software ecosystem.

4.2 Transitions between resource attraction systems

Science policy can encourage grant-funded projects to transition resource attraction

systems, gaining both ongoing resources and the approaches to managing work derived from

ecosystem complexity available to these systems.

Transitions to a model of commercial sales is familiar throughout science policy under

the name of technology transfer. There are well-known examples of Scientific software that has

made the transfer, especially in the statistical software space (e.g., SAS), but many. Efforts in

this direction include using cloud-hosted services with a "freemium" model of free, broad,

service provision for science and a paid tier for high and/or commercial users. Further research

is necessary to undertaken contingencies to commercial sales as a sustainability approach but it

seems clear that it is likely to only be successful in situations with high numbers of potential

users but limited complexity in terms of use-context diversity (reaching a scale at which the price

mechanism can communicate information about needs for adjustment) or in situations of low

user numbers but those which have a capacity to pay substantial usage fees.

Transitions to open source peer production are often promoted as most appropriate for the

sustainability of scientific software projects (e.g., Gambardella & Hall, 2006). Yet there is little

understanding of how to build working peer production from grant-funded projects. Certainly

simply making code available under an open source license is insufficient on its own to build a

motivated and productive community, as shown by the predominance of individual and stalled

projects in open source repositories (Krishnamurthy, 2002). Accordingly, science policy aiming

at successful transitions must go further than requiring release under an open source license,

which is the policy in place currently within some US federal agencies (e.g., NSF's SDCI and

SI2 programs). An open source license is necessary but not in any sense sufficient. Transitioning

from grant funding to open source peer production—or combining these models—implies

substantial organizational change, including changes in team structure (from local to distributed),

infrastructure (from controlled to open), governance (from hierarchical to shared), and

commitment of participants (from predictable to unpredictable). Adding more difficulty still is

 Submission #18373

 30

the simple fact that a transition requires organizational change; it may in fact be far easier to

achieve successful peer production from scratch than to begin with grant funding and then

transition. Perhaps unsurprisingly, therefore, there are only a few examples of successful

transitions from grant funding to sustainable peer production (e.g., Apache Airavata and the

ENZO project). Therefore science policy makers should fund research on transitions, encourage

projects which have accomplished successful transitions to share their approaches, and develop

educational materials on guiding transitions. We need to understand what changes in project

organization are needed and what actions projects can take to generate the needed changes. This

knowledge would help peer-review panels assess the quality of a grant applicant's sustainability

plan and their plans towards transitioning from grants to peer production.

A variation of this approach would acknowledge that, as in entrepreneurial startups, the

people best suited to beginning projects are not necessarily the best placed to continue and to

build community around them. For the reason funding agencies could consider funding

transitions from grant-funded development to peer production as separate projects, in essence

seeking to seed "external" participation by funding it more directly, rather than supplying

additional funds to the original developers.

5 Conclusion

We have argued that a primary driver of the challenge of sustainability in scientific

software is complexity driven by high diversity of use. Sustainability is not a simple matter of

improving the education of developers in techniques adopted from software engineering or

commercial software development. Rather, much of the complexity is driven by innovative

recombination by scientists at the edge of their scientific frontier. Further we have argued that

scientific grant-making, unlike commercial markets and open source peer production, currently

lacks mechanisms to address this. We have identified a set of feasible and appropriate

approaches, including further research, that scientific policy makers could take to shape the

scientific ecosystem and improve the sustainability of the scientific usefulness of software.

Acknowledgements

<blinded>.

 Submission #18373

 31

References

Adner, R., & Kapoor, R. 2010. Value creation in innovation ecosystems: how the structure of
technological interdependence affects firm performance in new technology generations.
Strategic Management Journal, 31(3): 306–333.

Alexander, J. 2009. Software Sustainability through Investment.
http://cisoftwaresustainability.iu-pti.org/node/31.

Alt, F. L. 1964. The Standardization of Programming Languages. Proceedings of the 1964 19th
ACM National Conference: 22.1–22.6. http://doi.acm.org/10.1145/800257.808893,
December 31, 2013, New York, NY, USA: ACM.

Anderson, N. R., Ash, J. S., & Tarczy-Hornoch, P. 2007. A qualitative study of the
implementation of a bioinformatics tool in a biological research laboratory. International
Journal of Medical Informatics, 76(11): 821–828.

Atkins, D. 2003. Report of the National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure. http://www.nsf.gov/od/oci/reports/toc.jsp.

Baldwin, C., & Woodard, C. 2009. The architecture of platforms: a unified view. (A. Gawer,
Ed.).

Baldwin, C. Y., & Clark, K. B. 2000. Design Rules: The Power of Modularity. Cambridge, MA:
Harvard Business School Press.

Baldwin, C. Y., & Clark, K. B. 2006. The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model? Management Science,
52(7): 1116–1127.

Batcheller, A. L. 2011. Requirements Engineering in Building Climate Science Software..
Ph.D. Dissertation. http://deepblue.lib.umich.edu/handle/2027.42/86438, December 24,
2013, University of Michigan.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al.
2001. Manifesto for Agile Software Development. http://www.agilemanifesto.org/.

Benkler, Y. 2002. Coase’s Penguin, or, Linux and The Nature of the Firm. Yale Law Journal,
112: 369–446.

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ortí, E. S., & Geijn, R. A. van de. 2005.
The science of deriving dense linear algebra algorithms. ACM Trans. Math. Softw.,
31(1): 1–26.

Bietz, M. J., Baumer, E. P., & Lee, C. P. 2010. Synergizing in Cyberinfrastructure Development.
Computer Supported Cooperative Work, 19(3-4): 245–281.

Bietz, M. J., Ferro, T., & Lee, C. P. 2012. Sustaining the development of cyberinfrastructure: an
organization adapting to change. Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work: 901–910.
http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/2145204.2145339, May 30, 2012, New
York, NY, USA: ACM.

Bikhchandani, S., Hirshleifer, D., & and Welch, I. 1992. Theory of Fads, Fashion, Custom, and
Cultural Change as Informational Cascades. Journal of Political Economy, 100(5):
1026.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., & Selby, R. 1995. Cost models
for future software life cycle processes: COCOMO 2.0. Annals of software engineering,
1(1): 57–94.

 Submission #18373

 32

Boudreau, K. 2010. Open Platform Strategies and Innovation: Granting Access vs. Devolving
Control. Management Science, 56(10): 1872.

Brynjolfsson, E. 1993. The productivity paradox of information technology. Commun. ACM,
36(12): 66–77.

Carver, J., Kendall, R., Squires, S., & Post, D. 2007. Software Development Environments for
Scientific and Engineering Software: A Series of Case Studies. Proc. ICSE: 559.

Colfer, L., & Baldwin, C. Y. 2010. The Mirroring Hypothesis: Theory, Evidence and
Exceptions. Working Paper No. 10-058. Harvard Business School Finance.

Conley, C. A. 2009. Work design for volunteers: The case of Open Source Software
development. Best Paper Proceedings, Academy of Management Annual Meeting.

Crowston, K., Wei, K., Howison, J., & Wiggins, A. 2012. Free (Libre) Open Source Software
Development: What We Know and What We Do Not Know. ACM Computing Surveys,
44(2): Article 7.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., & Howison, J. 2005. Coordination of Free/Libre
Open source software development. ICIS 2005. Proceedings of International
Conference on Information Systems 2005.

Dalle, J.-M., David, P. A., & Rullani, F. 2009. Linking coordination, motivations and code
structure in successful open source projects: A `stigmergic’ approach. Academy of
Management Presentation.

David, P. A. 1990. The Dynamo and the Computer: An Historical Perspective on the Modern
Productivity Paradox. The American Economic Review, 80(2): 355–361.

David, P. A. 2002. The economic logic of open science and the balance between private
property rights and the public domain in scientific data and information: a primer.

Dubois, P. F. 2005. Maintaining Correctness in Scientific Programs. Computing in Science and
Engg., 7(3): IEEE Educational Activities Department–85.

Edwards, P. N. 2010. A vast machine computer models, climate data, and the politics of global
warming. http://site.ebrary.com/id/10424687, June 12, 2013, Cambridge, Mass.: MIT
Press.

Faniel, I. 2009. Unrealized Potential: The Socio-Technical Challenges of a Large Scale
Cyberinfrastructure Initiative.

Fielding, R. T. 1999. Shared leadership in the Apache project. Association for Computing
Machinery. Communications of the ACM, 42(4).
http://proquest.umi.com/pqdweb?did=894760711\\&Fmt=7\\&clientId=3739\\&RQT=30
9\\&VName=PQD.

Gambardella, A., & Hall, B. H. 2006. Proprietary versus public domain licensing of software and
research products. Research Policy, 35(6): -892.

Garlan, D., Barnes, J. M., Schmerl, B., & Celiku, O. 2009. Evolution styles: Foundations and
tool support for software architecture evolution. Joint Working IEEE/IFIP Conference
on Software Architecture, 2009 European Conference on Software Architecture.
WICSA/ECSA 2009: 131–140. Presented at the Joint Working IEEE/IFIP Conference on
Software Architecture, 2009 European Conference on Software Architecture.
WICSA/ECSA 2009.

Garlan, D., & Perry, D. E. 1995. Introduction to the special issue on software architecture. IEEE
Transactions on software engineering, 21(4): 269–274.

Garlan, D., & Shaw, M. 1993. An introduction to software architecture. Advances in software
engineering and knowledge engineering, 1: 1–40.

 Submission #18373

 33

Gawer, A., & Cusumano, M. A. 2002. Platform Leadership: How Intel, Microsoft, and Cisco
Drive Industry Innovation.

Germonprez, M., & Warner, B. 2012. Organizational Participation in Open Innovation
Communities. In J. S. Z. E. Lundström, M. Wiberg, S. Hrastinski, M. Edenius, & P. J.
Ågerfalk (Eds.), Managing Open Innovation Technologies (2013th ed.). Springer.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., et al. 2007. Examining
the Challenges of Scientific Workflows. Computer, 40(12): 32.

Goecks, J., Nekrutenko, A., Taylor, J., & The Galaxy Team. 2010. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biology, 11(8): R86.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. 2009. How
do scientists develop and use scientific software? Proceedings of the 2009 ICSE
Workshop on Software Engineering for Computational Science and Engineering: -8.

Hertel, G. 2007. Motivating job design as a factor in open source governance. Journal of
Management and Governance, 11(2): 129–137.

Howison, J., & Crowston, K. 2014. Collaboration through open superposition: A theory of the
open source way. MIS Quarterly, 38(1): 29–50.

Howison, J., & Herbsleb, J. D. 2011. Scientific software production: incentives and
collaboration. Proceedings of the ACM Conference on Computer Supported
Cooperative Work: 513–522. Hangzhou, China.

Howison, J., & Herbsleb, J. D. 2013. Incentives and integration in scientific software production.
Proceedings of the ACM Conference on Computer Supported Cooperative Work: 459–
470. http://doi.acm.org/10.1145/2441776.2441828, June 5, 2013, San Antonio, TX.

Huang, K. G., & Murray, F. E. 2010. Entrepreneurial experiments in science policy: Analyzing
the Human Genome Project. Research Policy, 39(5): 582.

Iansiti, M., & Levien, R. 2004. The Keystone Advantage: What the New Dynamics of Business
Ecosystems mean for Strategy, Innovation, and Sustainability.

Ince, D. C., Hatton, L., & Graham-Cumming, J. 2012. The case for open computer programs.
Nature, 482(7386): 485–488.

Jansen, S., Cusumano, M. A., & Brinkkemper, S. 2013. Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing.

Ke, W., & Zhang, P. 2010. Extrinsic Motivations in Open Source Software Development Efforts
and The Moderating Effects of Satisfaction of Needs. Journal of the Association for
Information Systems, 11(12): Article 5.

Krishnamurthy, S. 2002. Cave or community: An empirical examination of 100 mature Open
Source projects. First Monday, 7(6).
http://www.firstmonday.org/issues/issue7_6/krishnamurthy/index.html.

Lakhani, K., & von Hippel, E. 2003. How open source software works: “free”’ user-to-user
assistance. Research Policy, 32(6): 923–943.

Leyshon, A. 2001. Time-space (and digital) compression: software formats, musical networks,
and the reorganisation of the music industry. Environment and Planning A, 33(1): 49–
78.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. 2006. Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code.
Management Science, 52(7): 1015–1030.

 Submission #18373

 34

McCullough, B. D., McGeary, K. A., & Harrison, T. D. 2006. Lessons from the JMCB Archive.
Journal of Money, Credit, and Banking, 38(4): 1093–1107.

McLay, R., & Cazes, J. 2012. Characterizing the Workload on Production HPC Clusters.
Working Paper. Texas Advanced Computing Center.

Messerschmitt, D., & Szyperski, C. 2005. Software ecosystem: understanding an indispensable
technology and industry.

Michlmayr, M. 2003. Quality and the Reliance on Individuals in Free Software Projects.
Proceedings of the ICSE 3rd Workshop on Open Source.

Morin, A., Eisenbraun, B., Key, J., Sanschagrin, P. C., Timony, M. A., Ottaviano, M., et al.
2013. Collaboration gets the most out of software. eLife, 2.
http://elife.elifesciences.org/content/2/e01456, December 24, 2013.

NSF. 2012. A Vision and Strategy for Software for Science, Engineering, and Education:
Cyberinfrastructure Framework for the 21st Century (CIF21). Dear Colleague Letter
No. 12-113. http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.htm, The US National
Science Foundation.

NSF Cyberinfrastructure Council. 2007. Cyberinfrastructure Vision for 21st Century Discovery.
http://netstats.ucar.edu/cyrdas/report/cyrdas_report_final.pdf.

Olson, J. S., Hoder, E. C., Bos, N., Zimmerman, A., Olson, G. M., Cooney, D., et al. 2008. A
Theory of Remote Scientific Collaboration. (G. M. Olson, N. Bos, & A. Zimmerman,
Eds.).

O’Mahony, S., & Ferraro, F. 2007. Governance in Collective Production Communities. Academy
of Management Journal, 50(5): 1079–1106.

Parnas, D. L., Clements, P. C., & Weiss, D. M. 1981. The modular structure of complex systems.
IEEE Transactions on Software Engineering, 11(3): 259–266.

Pavlo, A., Couvares, P., Gietzel, R., Karp, A., Alderman, I. D., Livny, M., et al. 2006. The NMI
build & test laboratory: Continuous integration framework for distributed computing
software. The 20th USENIX Large Installation System Administration Conference
(LISA).

Reay, D. S. 2010. Lessons from climategate. Nature, 467(7312): 157–157.
Riggs, W., & von Hippel, E. 1994. The Impact of Scientific and Commercial Values on the

Sources of Scientific Instrument Innovation. Research Policy, 23(July): 469.
Roberts, J. A., Hann, I.-H., & Slaughter, S. A. 2006. Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A Longitudinal
Study of the Apache Projects. Management Science, 52(7): 999.

Roure, D. D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., et al. 2009.
Towards Open Science: The myExperiment approach. Concurrency and Computation:
Practice and Experience, 22(17): 2335–2353.

Ryghaug, M., & Skjølsvold, T. M. 2010. The global warming of climate science: Climategate
and the construction of scientific facts. International Studies in the Philosophy of
Science, 24(3): 287–307.

Segal, J., & Morris, C. 2008. Developing Scientific Software. IEEE Software, 25(4): 20.
Stewart, C. A., Almes, G. T., & Wheeler, B. C. (Eds.). 2010. NSF Cyberinfrastructure Software

Sustainability and Reusability Workshop Report. http://hdl.handle.net/2022/6701.
Stodden, V., Donoho, D., Fomel, S., Friedlander, M., Gerstein, M., LeVeque, R., et al. 2010.

Reproducible Research. Computing in Science and Engineering, 12(5): 8–13.

 Submission #18373

 35

Stodden, V., Hurlin, C., & Perignon, C. 2012. RunMyCode.org: A novel dissemination and
collaboration platform for executing published computational results. 2012 IEEE 8th
International Conference on E-Science (e-Science): 1–8. Presented at the 2012 IEEE
8th International Conference on E-Science (e-Science).

Terry, M., Kay, M., & Lafreniere, B. 2010. Perceptions and practices of usability in the free/open
source software (FoSS) community. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: 999–1008.
http://doi.acm.org/10.1145/1753326.1753476, May 3, 2013, New York, NY, USA: ACM.

Trader, T. 2012, November 16. Blue Waters Opts Out of TOP500. HPCWire.
http://www.hpcwire.com/hpcwire/2012-11-16/blue_waters_opts_out_of_top500.html.

Trist, E. L., & Bamforth, K. W. 1951. Social and psychological consequences of the longwall
method of coal-getting. Human Relations, 4(1): 3–38.

Von Hippel, E., & von Krogh, G. 2003. Open Source Software and the `Private-Collective’
Innovation Model: Issues for Organization Science. Organization Science, 14(2): 209–
223.

West, J. 2006. Scope and Timing of Deployment: Moderators of Organizational Adoption of the
Linux Server Platform. International Journal of IT Standards Research, 4(2): 1–23.

Yegge, S. 2011, October. Stevey’s Google Platforms Rant I was at Amazon for about….
https://plus.google.com/+RipRowan/posts/eVeouesvaVX, December 24, 2013.

